
./ src/ agg_renderer.os

./ agg/ src

./ src/ graphics.os

./ src/ font_set.os

./ agg/ src/ agg_vcgen_markers_term.o

./ src/ params.os

./ agg/ src/ agg_image_filters.o

./ bindings/ python/ mapnik_symbolizer.os

./ src/ memory.os

./ bindings/ python/ mapnik_font_engine.os

./ plugins/ input/ shape/ dbff ile.os

./ agg/ src/ agg_line_aa_basics.o

./ src/ save_map.os

./ bindings/ python/ mapnik_view_transform.os

./ src/ color.os

./ agg/ libagg.a

./ src/ font_engine_freetype.os

./ src/ stroke.os

./ bindings/ python/ mapnik_image.os

./ src/ image_ut il.os

./ bindings/ python/ mapnik_datasource_cache.os

./ agg/ include

./ bindings/ python/ mapnik_rule.os

./ agg/ src/ agg_bezier_arc.o

./ bindings/ python/ mapnik_featureset.os

./ agg/ src/ agg_arc.o

./ plugins/ input/ shape/ shapefile.os

./ plugins/ input/ raster/ raster_datasource.os

./ plugins/ input/ raster/ raster_featureset.os

./ src/ unicode.os

./ bindings/ python/ mapnik/ ogcserver

./ bindings/ python/ mapnik_map.os

./ src/ arrow.os

./ plugins

./ plugins/ input/ raster/ raster.input

./ agg/ src/ agg_vcgen_contour.o

./ agg/ src/ agg_trans_warp_magnif ier.o

./ bindings/ python/ mapnik_datasource.os

./ plugins/ input/ shape/ shape_featureset.os

./ src/ load_map.os

./ bindings/ python/ mapnik_point_symbolizer.os

./ src/ line_pattern_symbolizer.os

./ bindings/ python/ mapnik

./ plugins/ input/ raster

./ src/ map.os
./ src/ wkb.os

./ agg/ src/ agg_vcgen_stroke.o

./ agg/ src/ agg_gsv_text.o

./ plugins/ input/ shape/ shape.os

./ bindings

./ src

./ bindings/ python/ mapnik_filter.os

./ agg/ src/ agg_vcgen_bspline.o

./ bindings/ python/ mapnik_coord.os

./ src/ envelope.os

./ agg/ src/ agg_vpgen_segmentator.o

./ bindings/ python/ mapnik_layer.os

./ bindings/ python/ mapnik_line_symbolizer.os

./ src/ shield_symbolizer.os

./ agg/ src/ agg_trans_double_path.o

./ src/ project ion.os

./ src/ t if f_reader.os

./ bindings/ python/ mapnik_proj_transform.os

./ bindings/ python/ mapnik_style.os

./ bindings/ python/ mapnik_shield_symbolizer.os

./ src/ image_reader.os

./ agg/ src/ agg_bspline.o

./ agg/ src/ agg_trans_single_path.o

./ plugins/ input/ raster/ raster_info.os

./ agg/ src/ agg_vcgen_dash.o

./ bindings/ python/ mapnik_project ion.os

./ bindings/ python/ mapnik_image_view.os

./ src/ distance.os

./ src/ datasource_cache.os

./ bindings/ python/ mapnik_parameters.os

./ src/ plugin.os

./ agg/ src/ agg_arrowhead.o

./ bindings/ python/ mapnik_feature.os

./ agg/ src/ agg_embedded_raster_fonts.o

./ src/ libmapnik.so

./ src/ placement_finder.os

./ agg/ src/ agg_sqrt_tables.o

./ agg/ src/ agg_vpgen_clip_polyline.o

./ bindings/ python/ mapnik_raster_symbolizer.os

./ agg/ src/ agg_line_profile_aa.o

./ bindings/ python/ mapnik_line_pattern_symbolizer.os

./ bindings/ python/ mapnik_color.os

./ src/ proj_transform.os

./ src/ memory_datasource.os

./ plugins/ input

./ bindings/ python/ mapnik_python.os

./ src/ png_reader.os

./ bindings/ python/ mapnik_envelope.os

./ bindings/ python/ mapnik_stroke.os

./ plugins/ input/ shape/ shape.input

./ bindings/ python/ mapnik_query.os

./ src/ point_symbolizer.os

./ src/ f ilter_factory.os

./ bindings/ python/ mapnik_polygon_symbolizer.os

./ agg/ src/ agg_vcgen_smooth_poly1.o

./ plugins/ input/ shape/ shape_index_featureset.os

./ bindings/ python/ python_cairo.os

./ src/ symbolizer.os

./ bindings/ python/ _mapnik.so

./ agg/ src/ agg_trans_aff ine.o

./ src/ polygon_pattern_symbolizer.os

./ bindings/ python/ mapnik_polygon_pattern_symbolizer.os

./ agg/ src/ agg_curves.o

./ src/ tex t_symbolizer.os

./ src/ scale_denominator.os

./ plugins/ input/ shape/ shape_io.os

./ src/ layer.os

./ agg

./ src/ libxml2_loader.os

./ agg/ src/ agg_vpgen_clip_polygon.o

./ plugins/ input/ shape

./ bindings/ python/ mapnik_geometry.os

./ bindings/ python/ mapnik_text_symbolizer.os

./ agg/ src/ agg_rounded_rect.o

./ bindings/ python

SCons 4.8.1
User Guide

The SCons Development Team

Version 4.8.1
Copyright © 2004 - 2024 The SCons Foundation
Publication date Released: Mon, 07 Jul 2024 17:17:52 -0700

iii

Table of Contents
Preface .. ix

1. SCons Principles ... ix
2. How to Use this Guide ... ix
3. A Caveat About This Guide's Completeness .. x
4. Acknowledgements ... x
5. Contact ... x

1. Building and Installing SCons .. 1
1.1. Installing Python .. 1
1.2. Installing SCons .. 2
1.3. Using SCons Without Installing ... 3
1.4. Running Multiple Versions of SCons Side-by-Side .. 3

2. Simple Builds .. 5
2.1. Building Simple C / C++ Programs ... 5
2.2. Building Object Files .. 6
2.3. Simple Java Builds .. 7
2.4. Cleaning Up After a Build .. 7
2.5. The SConstruct File .. 8

2.5.1. SConstruct Files Are Python Scripts .. 8
2.5.2. SCons Builders Are Order-Independent ... 9

2.6. Making the SCons Output Less Verbose .. 9
3. Less Simple Things to Do With Builds .. 11

3.1. Specifying the Name of the Target (Output) File ... 11
3.2. Compiling Multiple Source Files ... 12
3.3. Making a list of files with Glob .. 12
3.4. Specifying Single Files Vs. Lists of Files ... 13
3.5. Making Lists of Files Easier to Read ... 14
3.6. Keyword Arguments ... 14
3.7. Compiling Multiple Programs ... 15
3.8. Sharing Source Files Between Multiple Programs .. 15

4. Building and Linking with Libraries .. 17
4.1. Building Libraries .. 17

4.1.1. Building Libraries From Source Code or Object Files ... 18
4.1.2. Building Static Libraries Explicitly: the StaticLibrary Builder 18
4.1.3. Building Shared (DLL) Libraries: the SharedLibrary Builder 18

4.2. Linking with Libraries .. 19
4.3. Finding Libraries: the $LIBPATH Construction Variable .. 20

5. Node Objects ... 21
5.1. Builder Methods Return Lists of Target Nodes .. 21
5.2. Explicitly Creating File and Directory Nodes .. 22
5.3. Printing Node File Names ... 22
5.4. Using a Node's File Name as a String ... 23
5.5. GetBuildPath: Getting the Path From a Node or String ... 23

6. Dependencies ... 25
6.1. Deciding When an Input File Has Changed: the Decider Function .. 25

6.1.1. Using Content Signatures to Decide if a File Has Changed .. 26
6.1.2. Using Time Stamps to Decide If a File Has Changed ... 27
6.1.3. Deciding If a File Has Changed Using Both MD Signatures and Time Stamps 28
6.1.4. Extending SCons: Writing Your Own Custom Decider Function 28
6.1.5. Mixing Different Ways of Deciding If a File Has Changed .. 30

6.2. Implicit Dependencies: The $CPPPATH Construction Variable ... 31
6.3. Caching Implicit Dependencies ... 32

iv

6.3.1. The --implicit-deps-changed Option .. 33
6.3.2. The --implicit-deps-unchanged Option ... 33

6.4. Explicit Dependencies: the Depends Function ... 33
6.5. Dependencies From External Files: the ParseDepends Function ... 34
6.6. Ignoring Dependencies: the Ignore Function .. 35
6.7. Order-Only Dependencies: the Requires Function .. 36
6.8. The AlwaysBuild Function .. 38

7. Environments ... 40
7.1. Using Values From the External Environment ... 41
7.2. Construction Environments .. 42

7.2.1. Creating a Construction Environment: the Environment Function 42
7.2.2. Fetching Values From a Construction Environment .. 42
7.2.3. Expanding Values From a Construction Environment: the subst Method 44
7.2.4. Handling Problems With Value Expansion ... 44
7.2.5. Controlling the Default Construction Environment: the DefaultEnvironment Function
 ... 45
7.2.6. Multiple Construction Environments ... 46
7.2.7. Making Copies of Construction Environments: the Clone Method 47
7.2.8. Replacing Values: the Replace Method ... 48
7.2.9. Setting Values Only If They're Not Already Defined: the SetDefault Method 49
7.2.10. Appending to the End of Values: the Append Method ... 49
7.2.11. Appending Unique Values: the AppendUnique Method ... 50
7.2.12. Prepending to the Beginning of Values: the Prepend Method 50
7.2.13. Prepending Unique Values: the PrependUnique Method ... 51
7.2.14. Overriding Construction Variable Settings .. 51

7.3. Controlling the Execution Environment for Issued Commands .. 52
7.3.1. Propagating PATH From the External Environment .. 53
7.3.2. Adding to PATH Values in the Execution Environment ... 54

7.4. Using the toolpath for external Tools ... 54
7.4.1. The default tool search path .. 54
7.4.2. Providing an external directory to toolpath ... 54
7.4.3. Nested Tools within a toolpath ... 55
7.4.4. Using sys.path within the toolpath .. 55
7.4.5. Using the PyPackageDir function to add to the toolpath ... 56

8. Automatically Putting Command-line Options into their Construction Variables 57
8.1. Merging Options into the Environment: the MergeFlags Function ... 57
8.2. Merging Options While Creating Environment: the parse_flags Parameter 58
8.3. Separating Compile Arguments into their Variables: the ParseFlags Function 59
8.4. Finding Installed Library Information: the ParseConfig Function ... 60

9. Controlling Build Output ... 62
9.1. Providing Build Help: the Help Function .. 62
9.2. Controlling How SCons Prints Build Commands: the $*COMSTR Variables 63
9.3. Providing Build Progress Output: the Progress Function ... 65
9.4. Printing Detailed Build Status: the GetBuildFailures Function ... 67

10. Controlling a Build From the Command Line .. 69
10.1. Command-Line Options ... 69

10.1.1. How To Avoid Typing Command-Line Options Each Time: the SCONSFLAGS
Environment Variable ... 69
10.1.2. Getting Values Set by Command-Line Options: the GetOption Function 70
10.1.3. Setting Values of Command-Line Options: the SetOption Function 71
10.1.4. Strings for Getting or Setting Values of SCons Command-Line Options 72
10.1.5. Adding Custom Command-Line Options: the AddOption Function 73

10.2. Command-Line variable=value Build Variables .. 74
10.2.1. Controlling Command-Line Build Variables .. 76

v

10.2.2. Providing Help for Command-Line Build Variables .. 77
10.2.3. Reading Build Variables From a File ... 77
10.2.4. Pre-Defined Build Variable Functions .. 78
10.2.5. Adding Multiple Command-Line Build Variables at Once ... 85
10.2.6. Handling Unknown Command-Line Build Variables: the UnknownVariables Function
 ... 86

10.3. Command-Line Targets ... 86
10.3.1. Fetching Command-Line Targets: the COMMAND_LINE_TARGETS Variable 86
10.3.2. Controlling the Default Targets: the Default Function ... 87
10.3.3. Fetching the List of Build Targets, Regardless of Origin: the BUILD_TARGETS Variable
 ... 90

11. Installing Files in Other Directories: the Install Builder .. 92
11.1. Installing Multiple Files in a Directory ... 93
11.2. Installing a File Under a Different Name .. 93
11.3. Installing Multiple Files Under Different Names .. 94
11.4. Installing a Shared Library ... 94

12. Platform-Independent File System Manipulation ... 95
12.1. Copying Files or Directories: The Copy Factory .. 95
12.2. Deleting Files or Directories: The Delete Factory .. 96
12.3. Moving (Renaming) Files or Directories: The Move Factory .. 97
12.4. Updating the Modification Time of a File: The Touch Factory .. 98
12.5. Creating a Directory: The Mkdir Factory .. 98
12.6. Changing File or Directory Permissions: The Chmod Factory ... 99
12.7. Executing an action immediately: the Execute Function .. 99

13. Controlling Removal of Targets ... 101
13.1. Preventing target removal during build: the Precious Function .. 101
13.2. Preventing target removal during clean: the NoClean Function .. 101
13.3. Removing additional files during clean: the Clean Function .. 102

14. Hierarchical Builds .. 103
14.1. SConscript Files .. 103
14.2. Path Names Are Relative to the SConscript Directory ... 104
14.3. Top-Relative Path Names in Subsidiary SConscript Files .. 105
14.4. Absolute Path Names .. 105
14.5. Sharing Environments (and Other Variables) Between SConscript Files 106

14.5.1. Exporting Variables .. 106
14.5.2. Importing Variables .. 107
14.5.3. Returning Values From an SConscript File .. 108

15. Separating Source and Build Trees: Variant Directories .. 110
15.1. Specifying a Variant Directory Tree as Part of an SConscript Call 111
15.2. Why SCons Duplicates Source Files in a Variant Directory Tree ... 112
15.3. Telling SCons to Not Duplicate Source Files in the Variant Directory Tree 112
15.4. The VariantDir Function ... 113
15.5. Using VariantDir With an SConscript File .. 114
15.6. Using Glob with VariantDir ... 114
15.7. Variant Build Examples ... 115

16. Building From Code Repositories ... 117
16.1. The Repository Method .. 117
16.2. Finding source files in repositories ... 117
16.3. Finding #include files in repositories .. 118

16.3.1. Limitations on #include files in repositories .. 119
16.4. Finding the SConstruct file in repositories .. 120
16.5. Finding derived files in repositories ... 120
16.6. Guaranteeing local copies of files .. 121

17. Extending SCons: Writing Your Own Builders ... 122

vi

17.1. Writing Builders That Execute External Commands .. 122
17.2. Attaching a Builder to a Construction Environment ... 122
17.3. Letting SCons Handle The File Suffixes ... 123
17.4. Builders That Execute Python Functions ... 124
17.5. Builders That Create Actions Using a Generator ... 125
17.6. Builders That Modify the Target or Source Lists Using an Emitter ... 126
17.7. Modifying a Builder by adding an Emitter .. 127
17.8. Where To Put Your Custom Builders and Tools ... 128

18. Not Writing a Builder: the Command Builder .. 130
19. Extending SCons: Pseudo-Builders and the AddMethod function ... 132
20. Extending SCons: Writing Your Own Scanners .. 134

20.1. A Simple Scanner Example .. 134
20.2. Adding a search path to a Scanner: FindPathDirs .. 136
20.3. Using scanners with Builders .. 136

21. Multi-Platform Configuration (Autoconf Functionality) .. 138
21.1. Configure Contexts ... 138
21.2. Checking for the Existence of Header Files ... 139
21.3. Checking for the Availability of a Function ... 139
21.4. Checking for the Availability of a Library ... 140
21.5. Checking for the Availability of a typedef ... 140
21.6. Checking the size of a datatype ... 141
21.7. Checking for the Presence of a program .. 141
21.8. Extending SCons: Adding Your Own Custom Checks ... 141
21.9. Not Configuring When Cleaning Targets ... 143

22. Caching Built Files .. 144
22.1. Specifying the Derived-File Cache Directory ... 144
22.2. Keeping Build Output Consistent ... 145
22.3. Not Using the Derived-File Cache for Specific Files ... 145
22.4. Disabling the Derived-File Cache .. 146
22.5. Populating a Derived-File Cache With Already-Built Files ... 146
22.6. Minimizing Cache Contention: the --random Option .. 147
22.7. Using a Custom CacheDir Class .. 148

23. Alias Targets .. 149
24. Java Builds .. 151

24.1. Building Java Class Files: the Java Builder .. 151
24.2. How SCons Handles Java Dependencies ... 151
24.3. Building Java Archive (.jar) Files: the Jar Builder ... 152
24.4. Building C Header and Stub Files: the JavaH Builder .. 153
24.5. Building RMI Stub and Skeleton Class Files: the RMIC Builder .. 154

25. Internationalization and localization with gettext ... 155
25.1. Prerequisites ... 155
25.2. Simple project .. 155

26. Miscellaneous Functionality .. 161
26.1. Verifying the Python Version: the EnsurePythonVersion Function 161
26.2. Verifying the SCons Version: the EnsureSConsVersion Function 161
26.3. Accessing SCons Version: the GetSConsVersion Function .. 162
26.4. Explicitly Terminating SCons While Reading SConscript Files: the Exit Function 162
26.5. Searching for Files: the FindFile Function .. 163
26.6. Handling Nested Lists: the Flatten Function .. 164
26.7. Finding the Invocation Directory: the GetLaunchDir Function .. 166
26.8. Declaring Additional Outputs: the SideEffect Function .. 166
26.9. Virtual environments (virtualenvs) ... 169

27. Using SCons with other build tools .. 170
27.1. Creating a Compilation Database ... 170

vii

27.2. Ninja Build Generator ... 172
28. Troubleshooting .. 174

28.1. Why is That Target Being Rebuilt? the --debug=explain Option 174
28.2. What's in That Construction Environment? the Dump Method ... 176
28.3. What Dependencies Does SCons Know About? the --tree Option .. 181
28.4. How is SCons Constructing the Command Lines It Executes? the --debug=presub Option 187
28.5. Where is SCons Searching for Libraries? the --debug=findlibs Option 187
28.6. Where is SCons Blowing Up? the --debug=stacktrace Option 188
28.7. How is SCons Making Its Decisions? the --taskmastertrace Option 188
28.8. Watch SCons prepare targets for building: the --debug=prepare Option 190
28.9. Why is a file disappearing? the --debug=duplicate Option ... 191
28.10. Keep it simple .. 191

A. Construction Variables .. 192
B. Builders .. 267
C. Tools .. 297
D. Functions and Environment Methods ... 313
E. Handling Common Tasks ... 353

viii

List of Examples
E.1. Wildcard globbing to create a list of filenames .. 353
E.2. Filename extension substitution .. 353
E.3. Appending a path prefix to a list of filenames ... 353
E.4. Substituting a path prefix with another one ... 353
E.5. Filtering a filename list to exclude/retain only a specific set of extensions ... 353
E.6. The "backtick function": run a shell command and capture the output .. 353
E.7. Generating source code: how code can be generated and used by SCons ... 354

SCons Principles

ix

Preface
Thank you for taking the time to read about SCons. SCons is a modern software construction tool - a software utility
for building software (or other files) and keeping built software up-to-date whenever the underlying input files change.

The most distinctive thing about SCons is that its configuration files are actually scripts, written in the Python
programming language. This is in contrast to most alternative build tools, which typically invent a new language to
configure the build. SCons still has a learning curve, of course, because you have to know what functions to call to
set up your build properly, but the underlying syntax used should be familiar to anyone who has ever looked at a
Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for non-programmers to learn than
the cryptic languages of other build tools, which are usually invented by programmers for other programmers. This is
in no small part due to the consistency and readability that are hallmarks of Python. It just so happens that making a
real, live scripting language the basis for the configuration files makes it a snap for more accomplished programmers
to do more complicated things with builds, as necessary.

1. SCons Principles
There are a few overriding principles the SCons team tries to follow in the design and implementation.

Correctness
First and foremost, by default, SCons guarantees a correct build even if it means sacrificing performance a little.
We strive to guarantee the build is correct regardless of how the software being built is structured, how it may
have been written, or how unusual the tools are that build it.

Performance
Given that the build is correct, we try to make SCons build software as quickly as possible. In particular, wherever
we may have needed to slow down the default SCons behavior to guarantee a correct build, we also try to make
it easy to speed up SCons through optimization options that let you trade off guaranteed correctness in all end
cases for a speedier build in the usual cases.

Convenience
SCons tries to do as much for you out of the box as reasonable, including detecting the right tools on your system
and using them correctly to build the software.

In a nutshell, we try hard to make SCons just "do the right thing" and build software correctly, with a minimum of
hassles.

2. How to Use this Guide
This guide intends to coach you how to use SCons effectively and efficiently, by providing a range of examples and
usage scenarios. As such it is not exactly a tutorial (as usually those build a single example topic from start to finish),
but if you are just starting with SCons it is recommended you step through the first 10 chapters in sequence as this will
give a solid grounding in the principles of working with SCons. If you follow that trail, you can feel free to initially skip
sections on extending SCons, such as Writing your own Decider Function, and come back to those if the need arises.

The remaining chapters cover more advanced topics that not all build systems will need, and can be used in more of
a single-topic way, to read if you find you need that particular information.

It is often useful to keep SCons man page open in a separate browser tab or window to refer to as a complement to this
Guide, as the User Guide does not attempt to provide every detail. While this Guide's Appendices A-D do duplicate

A Caveat About This Guide's Completeness

x

information that appears in the man page (this is to allow intra-document links to definitions of construction variables,
builders, tools and environment methods to work), the rest of the man page is unique content.

3. A Caveat About This Guide's Completeness
SCons is a volunteer-run open source project. As such, the SCons documentation isn't always completely up-to-date
with all the available features - somehow it's almost harder to write high quality, easy to use documentation than it
is to implement a feature in software. In other words, there may be a lot that SCons can do that isn't yet covered in
this User's Guide.

Although this User's Guide may not be as complete as it could be, the development process does emphasize making
sure that the SCons man page is kept up-to-date with new features. So if you're trying to figure out how to do something
that SCons supports but can't find enough (or any) information here, it would be worth your while to look at the man
page to see if the information is covered there. And if you do, maybe you'd even consider contributing a section to the
User's Guide so the next person looking for that information won't have to go through the same thing...?

4. Acknowledgements
SCons would not exist without a lot of help from a lot of people, many of whom may not even be aware that they
helped or served as inspiration. So in no particular order, and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original author of the classic Perl-based
Cons tool which Bob first released to the world back around 1996. Bob's work on Cons classic provided the underlying
architecture and model of specifying a build configuration using a real scripting language. My real-world experience
working on Cons informed many of the design decisions in SCons, including the improved parallel build support,
making Builder objects easily definable by users, and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he initiated the Software Carpentry
design competition in February 2000. Without that nudge, marrying the advantages of the Cons classic architecture
with the readability of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons would be nowhere near as useful a
tool without the energy, enthusiasm and time people have contributed over the past few years. The "core team" of Chad
Austin, Anthony Roach, Bill Deegan, Charles Crain, Steve Leblanc, Greg Noel, Gary Oberbrunner, Greg Spencer and
Christoph Wiedemann have been great about reviewing my (and other) changes and catching problems before they
get in the code base. Of particular technical note: Anthony's outstanding and innovative work on the tasking engine
has given SCons a vastly superior parallel build model; Charles has been the master of the crucial Node infrastructure;
Christoph's work on the Configure infrastructure has added crucial Autoconf-like functionality; and Greg has provided
excellent support for Microsoft Visual Studio.

Special thanks to David Snopek for contributing his underlying "Autoscons" code that formed the basis of Christoph's
work with the Configure functionality. David was extremely generous in making this code available to SCons, given
that he initially released it under the GPL and SCons is released under a less-restrictive MIT-style license.

Thanks to Peter Miller for his splendid change management system, Aegis, which has provided the SCons project
with a robust development methodology from day one, and which showed me how you could integrate incremental
regression tests into a practical development cycle (years before eXtreme Programming arrived on the scene).

And last, thanks to Guido van Rossum for his elegant scripting language, which is the basis not only for the SCons
implementation, but for the interface itself.

5. Contact
The best way to contact people involved with SCons, is through the SCons mailing lists.

Contact

xi

If you want to ask general questions about how to use SCons send email to <scons-users@scons.org>.

If you want to contact the SCons development community directly, send email to <scons-dev@scons.org>.

For quicker, informal questions, discussion, etc. the project operated a Discord server at https://discord.gg/bXVpWAy
and a Libera.chat IRC channel at https://web.libera.chat/#scons (the former channel at irc.freenode.net is now unused).
Certain discussions may also be moved by administrators from mailing list or chat to GitHub Discussions [https://
github.com/SCons/scons/discussions] for greater permanence and easier finding.

https://discord.gg/bXVpWAy
https://web.libera.chat/#scons
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions

1 Building and Installing
SCons

This chapter will take you through the basic steps of installing SCons so you can use it for your projects. Before that,
however, this chapter will also describe the basic steps involved in installing Python on your system, in case that is
necessary. Fortunately, both SCons and Python are easy to install on almost any system, and Python already comes
installed on many systems.

1.1. Installing Python
Because SCons is written in the Python programming language, you need to have a Python interpreter available on
your system to use SCons. Before you try to install Python, check to see if Python is already available on your system
by typing python -V (capital 'V') or python --version at your system's command-line prompt. For Linux/
Unix/MacOS/BSD type systems this looks like:

$ python -V
Python 3.9.15

If you get a version like 2.7.x, you may need to try using the name python3 - current SCons no longer works with
Python 2.

Note to Windows users: there are a number of different ways Python can be installed or invoked on Windows, it is
beyond the scope of this guide to unravel all of them. Some have an additional program called the Python launcher
(described, somewhat technically, in PEP 397 [https://www.python.org/dev/peps/pep-0397/]): try using the command
name py instead of python, if that is not available drop back to trying python

C:\>py -V
Python 3.9.15

If Python is not installed on your system, or is not findable in the current search path, you will see an error message
stating something like "command not found" (on UNIX or Linux) or "'python' is not recognized
as an internal or external command, operable progam or batch file" (on Windows
cmd). In that case, you need to either install Python or fix the search path before you can install SCons.

https://www.python.org/dev/peps/pep-0397/
https://www.python.org/dev/peps/pep-0397/

Installing SCons

2

The link for downloading Python installers (Windows and Mac) from the project's own website is: https://
www.python.org/download. There are useful system-specific entries on setup and usage to be found at: https://
docs.python.org/3/using

For Linux systems, Python is almost certainly available as a supported package, probably installed by default; this is
often preferred over installing by other means as the system package will be built with carefully chosen optimizations,
and will be kept up to date with bug fixes and security patches. In fact, the Python project itself does not build installers
for Linux for this reason. Many such systems have separate packages for Python 2 and Python 3 - make sure the Python
3 package is installed, as the latest SCons requires it. Building from source may still be a useful option if you need a
specific version that is not offered by the distribution you are using.

Recent versions of the Mac no longer come with Python pre-installed; older versions came with a rather out of date
version (based on Python 2.7) which is insufficient to run current SCons. The python.org installer can be used on the
Mac, but there are also other sources such as MacPorts and Homebrew. The Anaconda installation also comes with
a bundled Python.

Windows has even more choices. The Python.org installer is a traditional .exe style; the same software is also released
as a Windows application through the Microsoft Store. Several alternative builds also exist such as Chocolatey and
ActiveState, and, again, a version of Python comes with Anaconda.

SCons will work with Python 3.6 or later. If you need to install Python and have a choice, we recommend using the
most recent Python version available. Newer Python versions have significant improvements that help speed up the
performance of SCons.

1.2. Installing SCons
The recommended way to install SCons is from the Python Package Index (PyPI [https://pypi.org/project/SCons/]):

% python -m pip install scons

If you prefer not to install to the Python system location, or do not have privileges to do so, you can add a flag to install
to a location specific to your own account and Python version:

% python -m pip install --user scons

For those users using Anaconda or Miniconda, use the conda installer instead, so the scons install location will match
the version of Python that system will be using. For example:

% conda install -c conda-forge scons

If you need a specific version of SCons that is different from the current version, pip has a version option (e.g.
python -m pip install scons==3.1.2), or you can follow the instructions in the following sections.

SCons does comes pre-packaged for installation on many Linux systems. Check your package installation system
to see if there is an up-to-date SCons package available. Many people prefer to install distribution-native packages
if available, as they provide a central point for management and updating; however not all distributions update in a
timely fashion. During the still-ongoing Python 2 to 3 transition, some distributions may still have two SCons packages
available, one which uses Python 2 and one which uses Python 3. Since the latest scons only runs on Python 3, to get
the current version you should choose the Python 3 package.

https://www.python.org/download
https://www.python.org/download
https://docs.python.org/3/using
https://docs.python.org/3/using
https://pypi.org/project/SCons/
https://pypi.org/project/SCons/

Using SCons Without Installing

3

1.3. Using SCons Without Installing
You don't actually need to "install" SCons to use it. Nor do you need to "build" it, unless you are interested in producing
the SCons documentation, which does use several tools to produce HTML, PDF and other output formats from files
in the source tree. All you need to do is call the scons.py driver script in a location that contains an SCons tree,
and it will figure out the rest. You can test that like this:

$ python /path/to/unpacked/scripts/scons.py --version

To make use of an uninstalled SCons, the first step is to download either the scons-4.8.1.tar.gz or
scons-4.8.1.zip, which are available from the SCons download page at https://scons.org/pages/download.html.
There is also a scons-local bundle you can make use of. It is arranged a little bit differently, with the idea that you
can include it with your own project if you want people to be able to do builds without having to download or install
SCons. Finally, you can also use a checkout of the git tree from GitHub at a location to point to.

Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or WinZip on Windows. This will
create a directory called scons-4.8.1, usually in your local directory. The driver script will be in a subdirectory
named scripts, unless you are using scons-local, in which case it will be in the top directory. Now you only
need to call scons.py by giving a full or relative path to it in order to use that SCons version.

Note that instructions for older versions may have suggested running python setup.py install to "build
and install" SCons. This is no longer recommended (in fact, it is not recommended by the wider Python packaging
community for any end-user installations of Python software). There is a setup.py file, but it is only tested and
used for the automated procedure which prepares an SCons bundle for making a release on PyPI, and even that is not
guaranteed to work in future.

1.4. Running Multiple Versions of SCons Side-
by-Side
In some cases you may need several versions of SCons present on a system at the same time - perhaps you have an
older project to build that has not yet been "ported" to a newer SCons version, or maybe you want to test a new SCons
release side-by-side with a previous one before switching over. The use of an "uninstalled" package as described in
the previous section can be of use for this purpose.

Another approach to multiple versions is to create Python virtualenvs, and install different SCons versions in each.
A Python virtual environment is a directory with an isolated set of Python packages, where packages you install/
upgrade/remove inside the environment do not affect anything outside it, and those you install/upgrade/remove outside
of it do not affect anything inside it. In other words, anything you do with pip in the environment stays in that
environment. The Python standard library provides a module called venv for creating these (https://docs.python.org/
e/library/venv.html), although there are also other tools which provide more precise control of the setup.

Using a virtualenv can be useful even for a single version of SCons, to gain the advantages of having an isolated
environment. It also gets around the problem of not having administrative privileges on a particular system to install
a distribution package or use pip to install to a system location, as the virtualenv is completely under your control.

The following outline shows how this could be set up on a Linux/POSIX system (the syntax will be a bit different
on Windows):

$ create virtualenv named scons3
$ create virtualenv named scons4

https://scons.org/pages/download.html
https://docs.python.org/e/library/venv.html
https://docs.python.org/e/library/venv.html

Running Multiple Versions of SCons Side-by-Side

4

$ source scons3/bin/activate
$ pip install scons==3.1.2
$ deactivate
$ source scons4/bin/activate
$ pip install scons
$ deactivate
$ activate a virtualenv and run 'scons' to use that version

2 Simple Builds

The single most important thing you do when writing a build system for your project is to describe the "what": what
you want to build, and which files you want to build it from. And, in fact, simpler builds may need no more. In this
chapter, you will see several examples of very simple build configurations using SCons, which will demonstrate how
easy SCons makes it to build programs on different types of systems.

2.1. Building Simple C / C++ Programs
Here's the ubiquitous "Hello, World!" [https://en.wikipedia.org/wiki/%22Hello,_World!%22_program] program in C:

#include <stdio.h>

int
main()
{
 printf("Hello, world!\n");
}

And here's how to build it using SCons. Save the code above into hello.c, and enter the following into a file named
SConstruct:

Program('hello.c')

This minimal build file gives SCons three key pieces of information: what you want to build (a program); what you
want to call that program (its base name will be hello), and the source file you want it built from (the hello.c
file). Program is a Builder, an SCons function that you use to instruct SCons about the "what" of your build.

That's it. Now run the scons command to build the program. On a POSIX-compliant system like Linux or UNIX,
you'll see something like:

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

Building Object Files

6

cc -o hello hello.o
scons: done building targets.

On a Windows system with the Microsoft Visual C++ compiler, you'll see something like:

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)
scons: done building targets.

Notice that SCons deduced quite a bit here: it figured out the name of the program to build, including operating system
specific suffixes (hello or hello.exe), based off the basename of the source file; it knows an intermediate object
file should be built (hello.o or hello.obj); and it knows how to build those things using the compiler that is
appropriate on the system you're using. It was not necessary to instruct SCons about any of those details. This is an
example of how SCons makes it easy to write portable software builds.

For the programming languages SCons already knows about, it will mostly just figure it out. Here's the "Hello, World!"
example in Fortran:

program hello
 print *, 'Hello, World!'
end program hello

Program('hello', 'hello.f90')

$ scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
gfortran -o hello.o -c hello.f90
gfortran -o hello hello.o
scons: done building targets.

2.2. Building Object Files
The Program builder is only one of many builders (also called a builder method) that SCons provides to build different
types of files. Another is the Object builder method, which tells SCons to build an object file from the specified
source file:

Object('hello.c')

Now when you run the scons command to build the program, it will build just the hello.o object file on a POSIX
system:

Simple Java Builds

7

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cc -o hello.o -c hello.c
scons: done building targets.

And just the hello.obj object file on a Windows system (with the Microsoft Visual C++ compiler):

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /Fohello.obj /c hello.c /nologo
scons: done building targets.

(Note that this guide will not continue to provide duplicate side-by-side POSIX and Windows output for all of the
examples. Just keep in mind that, unless otherwise specified, any of the examples should work equally well on both
types of systems.)

2.3. Simple Java Builds
SCons also makes building with Java extremely easy. Unlike the Program and Object builder methods, however,
the Java builder method requires that you specify the name of a destination directory in which you want the class
files placed, followed by the source directory in which the .java files live:

Java('classes', 'src')

If the src directory contains a single hello.java file, then the output from running the scons command would
look something like this (on a POSIX system):

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
javac -d classes -sourcepath src src/hello.java
scons: done building targets.

Java builds will be covered in much more detail, including building a Java archive (.jar) and other types of files,
in Chapter 24, Java Builds.

2.4. Cleaning Up After a Build
For cleaning up your build tree, SCons provides a "clean" mode, selected by the -c or --clean option when you
invoke SCons. SCons selects the same set of targets it would in build mode, but instead of building, removes them.
That means you can control what is cleaned in exactly the same way as you control what gets built. If you build the C
example above and then invoke scons -c afterwards, the output on POSIX looks like:

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.

The SConstruct File

8

scons: Building targets ...
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.
% scons -c
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed hello.o
Removed hello
scons: done cleaning targets.

And the output on Windows looks like:

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)
scons: done building targets.
C:\>scons -c
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed hello.obj
Removed hello.exe
scons: done cleaning targets.

Notice that SCons changes its output to tell you that it is Cleaning targets ... and done cleaning
targets.

2.5. The SConstruct File
If you're used to build systems like Make you've already figured out that the SConstruct file is the SCons equivalent
of a Makefile. That is, the SConstruct file is the input file that SCons reads to control the build.

2.5.1. SConstruct Files Are Python Scripts
There is, however, an important difference between an SConstruct file and a Makefile: the SConstruct file
is actually a Python script. If you're not already familiar with Python, don't worry. This User's Guide will introduce
you step-by-step to the relatively small amount of Python you'll need to know to be able to use SCons effectively.
And Python is very easy to learn.

One aspect of using Python as the scripting language is that you can put comments in your SConstruct file using
Python's commenting convention: everything between a # character and the end of the line will be ignored (unless
the character appears inside a string constant).

Arrange to build the "hello" program.
Program("hello.c") # "hello.c" is the source file.
Program("#goodbye.c") # the # in "#goodbye" does not indicate a comment

SCons Builders Are Order-Independent

9

You'll see throughout the remainder of this Guide that being able to use the power of a real scripting language can
greatly simplify the solutions to complex requirements of real-world builds.

2.5.2. SCons Builders Are Order-Independent
One important way in which the SConstruct file is not exactly like a normal Python script, and is more like a
Makefile, is that the order in which the SCons Builder functions are called in the SConstruct file does not affect
the order in which SCons actually builds the programs and object files you want it to build. 1. In other words, when
you call the Program builder (or any other builder method), you're not telling SCons to build the program at that
moment. Instead, you're telling SCons what you want accomplished, and it's up to SCons to figure out how to do that,
and to take those steps if/when it's necessary. you'll learn more about how SCons decides when building or rebuilding
a target is necessary in Chapter 6, Dependencies, below.

SCons reflects this distinction between calling a builder method like Program and actually building the program
by printing the status messages that indicate when it's "just reading" the SConstruct file, and when it's actually
building the target files. This is to make it clear when SCons is executing the Python statements that make up the
SConstruct file, and when SCons is actually executing the commands or other actions to build the necessary files.

Let's clarify this with an example. Python has a print function that prints a string of characters to the screen. If you
put print calls around the calls to the Program builder method:

print("Calling Program('hello.c')")
Program('hello.c')
print("Calling Program('goodbye.c')")
Program('goodbye.c')
print("Finished calling Program()")

Then when you execute SCons, you will see the output from calling the print function in between the messages
about reading the SConscript files, indicating that is when the Python statements are being executed:

% scons
scons: Reading SConscript files ...
Calling Program('hello.c')
Calling Program('goodbye.c')
Finished calling Program()
scons: done reading SConscript files.
scons: Building targets ...
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
cc -o hello.o -c hello.c
cc -o hello hello.o
scons: done building targets.

Notice that SCons built the goodbye program first, even though the "reading SConscript" output shows that
Program('hello.c') was called first in the SConstruct file.

2.6. Making the SCons Output Less Verbose
You've already seen how SCons prints some messages about what it's doing, surrounding the actual commands used
to build the software:

1In programming parlance, the SConstruct file is declarative, meaning you tell SCons what you want done and let it figure out the order in
which to do it, rather than strictly imperative, where you specify explicitly the order in which to do things.

Making the SCons Output Less Verbose

10

C:\>scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)
scons: done building targets.

These messages emphasize the order in which SCons does its work: all of the configuration files (generically referred
to as SConscript files) are read and executed first, and only then are the target files built. Among other benefits,
these messages help to distinguish between errors that occur while the configuration files are read, and errors that
occur while targets are being built.

One drawback, of course, is that these messages clutter the output. Fortunately, they're easily disabled by using the
-Q option when invoking SCons:

C:\>scons -Q
cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)

So this User's Guide can focus on what SCons is actually doing, the -Q option will be used to remove these messages
from the output of all the remaining examples in this Guide.

3 Less Simple Things to Do
With Builds

Of course, most builds are more complicated than in the previous chapter. In this chapter, you will learn about builds
that incorporate multiple source files, and then about building multiple targets that share some source files.

3.1. Specifying the Name of the Target (Output)
File
You've seen that when you call the Program builder method, it builds the resulting program with the same base
name as the source file. That is, the following call to build an executable program from the hello.c source file will
build an executable program named hello on POSIX systems, and an executable program named hello.exe on
Windows systems:

Program('hello.c')

If you want to build a program with a different base name than the base of the source file name (or even the same
name), you simply put the target file name to the left of the source file name:

Program('new_hello', 'hello.c')

SCons requires the target file name first, followed by the source file name, so that the order mimics that of an assignment
statement in most programming languages, including Python: "target = source files". For an alternative
way to supply this information, see Section 3.6, “Keyword Arguments”.

Now SCons will build an executable program named new_hello when run on a POSIX system:

% scons -Q
cc -o hello.o -c hello.c
cc -o new_hello hello.o

And SCons will build an executable program named new_hello.exe when run on a Windows system:

C:\>scons -Q

Compiling Multiple Source Files

12

cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:new_hello.exe hello.obj
embedManifestExeCheck(target, source, env)

3.2. Compiling Multiple Source Files
You've just seen how to configure SCons to compile a program from a single source file. It's more common, of course,
that you'll need to build a program from many input source files, not just one. To do this, you need to put the source
files in a Python list (enclosed in square brackets), like so:

Program(['prog.c', 'file1.c', 'file2.c'])

A build of the above example would look like:

% scons -Q
cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o prog.o -c prog.c
cc -o prog prog.o file1.o file2.o

Notice that SCons deduces the output program name from the first source file specified in the list--that is, because the
first source file was prog.c, SCons will name the resulting program prog (or prog.exe on a Windows system).
If you want to specify a different program name, then (as described in the previous section) you slide the list of source
files over to the right to make room for the output program file name. Here is the updated example:

Program('program', ['prog.c', 'file1.c', 'file2.c'])

On Linux, a build of this example would look like:

% scons -Q
cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o prog.o -c prog.c
cc -o program prog.o file1.o file2.o

Or on Windows:

C:\>scons -Q
cl /Fofile1.obj /c file1.c /nologo
cl /Fofile2.obj /c file2.c /nologo
cl /Foprog.obj /c prog.c /nologo
link /nologo /OUT:program.exe prog.obj file1.obj file2.obj
embedManifestExeCheck(target, source, env)

3.3. Making a list of files with Glob
You can also use the Glob function to find all files matching a certain template, using the standard shell pattern
matching characters * (to match everything), ? (to match a single character) and [abc] to match any of a, b or c. [!
abc] is also supported, to match any character except a, b or c. This makes many multi-source-file builds quite easy:

Specifying Single Files Vs. Lists of Files

13

Program('program', Glob('*.c'))

Glob has powerful capabilities - it matches even if the file does not currently exist, but SCons can determine that it
would exist after a build. You will meet it again reading about variant directories (see Chapter 15, Separating Source
and Build Trees: Variant Directories) and repositories (see Chapter 16, Building From Code Repositories).

3.4. Specifying Single Files Vs. Lists of Files
You've now seen two ways to specify the source for a program, one with a list of files:

Program('hello', ['file1.c', 'file2.c'])

And one with a single file:

Program('hello', 'hello.c')

You can actually put a single file name in a list, too, which you might prefer just for the sake of consistency:

Program('hello', ['hello.c'])

SCons functions will accept a single file name in either form. In fact, internally, SCons treats all input as lists of files,
but allows you to omit the square brackets to cut down a little on the typing when there's only a single file name.

Important

Although SCons functions are forgiving about whether or not you use a string vs. a list for a single file name,
Python itself is more strict about treating lists and strings differently. So where SCons allows either a string
or list:

The following two calls both work correctly:
Program('program1', 'program1.c')
Program('program2', ['program2.c'])

Trying to do "Python things" that mix strings and lists will cause errors or lead to incorrect results:

common_sources = ['file1.c', 'file2.c']

THE FOLLOWING IS INCORRECT AND GENERATES A PYTHON ERROR
BECAUSE IT TRIES TO ADD A STRING TO A LIST:
Program('program1', common_sources + 'program1.c')

The following works correctly, because it's adding two
lists together to make another list.
Program('program2', common_sources + ['program2.c'])

Making Lists of Files Easier to Read

14

3.5. Making Lists of Files Easier to Read
One drawback to the use of a Python list for source files is that each file name must be enclosed in quotes (either
single quotes or double quotes). This can get cumbersome and difficult to read when the list of file names is long.
Fortunately, SCons and Python provide a number of ways to make sure that the SConstruct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Split function that takes a quoted list of
file names, with the names separated by spaces or other white-space characters, and turns it into a list of separate file
names. Using the Split function turns the previous example into:

Program('program', Split('main.c file1.c file2.c'))

(If you're already familiar with Python, you'll have realized that this is similar to the split() method of Python
string objects.. Unlike the split() method, however, the Split function does not require a string as input and
will wrap up a single non-string object in a list, or return its argument untouched if it's already a list. This comes in
handy as a way to make sure arbitrary values can be passed to SCons functions without having to check the type of
the variable by hand.)

Putting the call to the Split function inside the Program call can also be a little unwieldy. A more readable
alternative is to assign the output from the Split call to a variable name, and then use the variable when calling
the Program function:

src_files = Split('main.c file1.c file2.c')
Program('program', src_files)

Lastly, the Split function doesn't care how much white space separates the file names in the quoted string. This
allows you to create lists of file names that span multiple lines, which often makes for easier editing:

src_files = Split("""
 main.c
 file1.c
 file2.c
""")
Program('program', src_files)

(Note this example uses the Python "triple-quote" syntax, which allows a string to span multiple lines. The three quotes
can be either single or double quotes as long as they match.)

3.6. Keyword Arguments
SCons also allows you to identify the output file and input source files using Python keyword arguments target and
source. A keyword argument is an argument preceded by an identifier, of the form name=value, in a function
call. The usage looks like this example:

src_files = Split('main.c file1.c file2.c')
Program(target='program', source=src_files)

Compiling Multiple Programs

15

Because the keywords explicitly identify what each argument is, the order does not matter and you can reverse it if
you prefer:

src_files = Split('main.c file1.c file2.c')
Program(source=src_files, target='program')

Whether or not you choose to use keyword arguments to identify the target and source files, and the order in which
you specify them when using keywords, are purely personal choices; SCons functions the same regardless.

3.7. Compiling Multiple Programs
In order to compile multiple programs within the same SConstruct file, simply call the Program method multiple
times, once for each program you need to build:

Program('foo.c')
Program('bar', ['bar1.c', 'bar2.c'])

SCons would then build the programs as follows:

% scons -Q
cc -o bar1.o -c bar1.c
cc -o bar2.o -c bar2.c
cc -o bar bar1.o bar2.o
cc -o foo.o -c foo.c
cc -o foo foo.o

Notice that SCons does not necessarily build the programs in the same order in which you specify them in the
SConstruct file. SCons does, however, recognize that the individual object files must be built before the resulting
program can be built. (This will be covered in greater detail in Chapter 6, Dependencies, below.)

3.8. Sharing Source Files Between Multiple
Programs
It's common to re-use code by sharing source files between multiple programs. One way to do this is to create a library
from the common source files, which can then be linked into resulting programs. (Creating libraries is discussed in
Chapter 4, Building and Linking with Libraries, below.)

A more straightforward, but perhaps less convenient, way to share source files between multiple programs is simply
to include the common files in the lists of source files for each program:

Program(Split('foo.c common1.c common2.c'))
Program('bar', Split('bar1.c bar2.c common1.c common2.c'))

SCons recognizes that the object files for the common1.c and common2.c source files each need to be built only
once, even though the resulting object files are each linked in to both of the resulting executable programs:

% scons -Q

Sharing Source Files Between Multiple Programs

16

cc -o bar1.o -c bar1.c
cc -o bar2.o -c bar2.c
cc -o common1.o -c common1.c
cc -o common2.o -c common2.c
cc -o bar bar1.o bar2.o common1.o common2.o
cc -o foo.o -c foo.c
cc -o foo foo.o common1.o common2.o

If two or more programs share a lot of common source files, repeating the common files in the list for each program
can be a maintenance problem when you need to change the list of common files. You can simplify this by creating a
separate Python list to hold the common file names, and concatenating it with other lists using the Python + operator:

common = ['common1.c', 'common2.c']
foo_files = ['foo.c'] + common
bar_files = ['bar1.c', 'bar2.c'] + common
Program('foo', foo_files)
Program('bar', bar_files)

This is functionally equivalent to the previous example.

4 Building and Linking with
Libraries

It's often useful to organize large software projects by collecting parts of the software into one or more libraries. SCons
makes it easy to create libraries and to use them in the programs.

4.1. Building Libraries
You build your own libraries by specifying Library instead of Program:

Library('foo', ['f1.c', 'f2.c', 'f3.c'])

SCons uses the appropriate library prefix and suffix for your system. So on POSIX or Linux systems, the above example
would build as follows (although ranlib may not be called on all systems):

% scons -Q
cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a

On a Windows system, a build of the above example would look like:

C:\>scons -Q
cl /Fof1.obj /c f1.c /nologo
cl /Fof2.obj /c f2.c /nologo
cl /Fof3.obj /c f3.c /nologo
lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj

The rules for the target name of the library are similar to those for programs: if you don't explicitly specify a target
library name, SCons will deduce one from the name of the first source file specified, and SCons will add an appropriate
file prefix and suffix if you leave them off.

Building Libraries From Source Code or Object Files

18

4.1.1. Building Libraries From Source Code or Object
Files
The previous example shows building a library from a list of source files. You can, however, also give the Library
call object files, and it will correctly realize they are object files. In fact, you can arbitrarily mix source code files and
object files in the source list:

Library('foo', ['f1.c', 'f2.o', 'f3.c', 'f4.o'])

And SCons realizes that only the source code files must be compiled into object files before creating the final library:

% scons -Q
cc -o f1.o -c f1.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o f4.o
ranlib libfoo.a

Of course, in this example, the object files must already exist for the build to succeed. See Chapter 5, Node Objects,
below, for information about how you can build object files explicitly and include the built files in a library.

4.1.2. Building Static Libraries Explicitly: the
StaticLibrary Builder
The Library function builds a traditional static library. If you want to be explicit about the type of library being
built, you can use the synonym StaticLibrary function instead of Library:

StaticLibrary('foo', ['f1.c', 'f2.c', 'f3.c'])

There is no functional difference between the StaticLibrary and Library functions.

4.1.3. Building Shared (DLL) Libraries: the
SharedLibrary Builder
If you want to build a shared library (on POSIX systems) or a DLL file (on Windows systems), you use the
SharedLibrary function:

SharedLibrary('foo', ['f1.c', 'f2.c', 'f3.c'])

The output on POSIX:

% scons -Q
cc -o f1.os -c f1.c
cc -o f2.os -c f2.c
cc -o f3.os -c f3.c
cc -o libfoo.so -shared f1.os f2.os f3.os

And the output on Windows:

Linking with Libraries

19

C:\>scons -Q
cl /Fof1.obj /c f1.c /nologo
cl /Fof2.obj /c f2.c /nologo
cl /Fof3.obj /c f3.c /nologo
link /nologo /dll /out:foo.dll /implib:foo.lib f1.obj f2.obj f3.obj
RegServerFunc(target, source, env)
embedManifestDllCheck(target, source, env)

Notice again that SCons takes care of building the output file correctly, adding the -shared option for a POSIX
compilation, and the /dll option on Windows.

4.2. Linking with Libraries
Usually, you build a library because you want to link it with one or more programs. You link libraries with a program
by specifying the libraries in the $LIBS construction variable, and by specifying the directory in which the library
will be found in the $LIBPATH construction variable:

Library('foo', ['f1.c', 'f2.c', 'f3.c'])
Program('prog.c', LIBS=['foo', 'bar'], LIBPATH='.')

Notice, of course, that you don't need to specify a library prefix (like lib) or suffix (like .a or .lib). SCons uses
the correct prefix or suffix for the current system.

On a POSIX or Linux system, a build of the above example would look like:

% scons -Q
cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a
cc -o prog.o -c prog.c
cc -o prog prog.o -L. -lfoo -lbar

On a Windows system, a build of the above example would look like:

C:\>scons -Q
cl /Fof1.obj /c f1.c /nologo
cl /Fof2.obj /c f2.c /nologo
cl /Fof3.obj /c f3.c /nologo
lib /nologo /OUT:foo.lib f1.obj f2.obj f3.obj
cl /Foprog.obj /c prog.c /nologo
link /nologo /OUT:prog.exe /LIBPATH:. foo.lib bar.lib prog.obj
embedManifestExeCheck(target, source, env)

As usual, notice that SCons has taken care of constructing the correct command lines to link with the specified library
on each system.

Note also that, if you only have a single library to link with, you can specify the library name in single string, instead
of a Python list, so that:

Program('prog.c', LIBS='foo', LIBPATH='.')

Finding Libraries: the $LIBPATH Construction Variable

20

is equivalent to:

Program('prog.c', LIBS=['foo'], LIBPATH='.')

This is similar to the way that SCons handles either a string or a list to specify a single source file.

4.3. Finding Libraries: the $LIBPATH
Construction Variable
By default, the linker will only look in certain system-defined directories for libraries. SCons knows how to look for
libraries in directories that you specify with the $LIBPATH construction variable. $LIBPATH consists of a list of
directory names, like so:

Program('prog.c', LIBS = 'm',
 LIBPATH = ['/usr/lib', '/usr/local/lib'])

Using a Python list is preferred because it's portable across systems. Alternatively, you could put all of the directory
names in a single string, separated by the system-specific path separator character: a colon on POSIX systems:

LIBPATH = '/usr/lib:/usr/local/lib'

or a semi-colon on Windows systems:

LIBPATH = 'C:\\lib;D:\\lib'

(Note that Python requires that the backslash separators in a Windows path name be escaped within strings.)

When the linker is executed, SCons will create appropriate flags so that the linker will look for libraries in the same
directories as SCons. So on a POSIX or Linux system, a build of the above example would look like:

% scons -Q
cc -o prog.o -c prog.c
cc -o prog prog.o -L/usr/lib -L/usr/local/lib -lm

On a Windows system, a build of the above example would look like:

C:\>scons -Q
cl /Foprog.obj /c prog.c /nologo
link /nologo /OUT:prog.exe /LIBPATH:\usr\lib /LIBPATH:\usr\local\lib m.lib prog.obj
embedManifestExeCheck(target, source, env)

Note again that SCons has taken care of the system-specific details of creating the right command-line options.

5 Node Objects

Internally, SCons represents all of the files and directories it knows about as Nodes. These internal objects (not object
files) can be used in a variety of ways to make your SConscript files portable and easy to read.

5.1. Builder Methods Return Lists of Target
Nodes
All builder methods return a list of Node objects that identify the target file or files that will be built. These returned
Nodes can be passed as arguments to other builder methods.

For example, suppose that we want to build the two object files that make up a program with different options. This
would mean calling the Object builder once for each object file, specifying the desired options:

Object('hello.c', CCFLAGS='-DHELLO')
Object('goodbye.c', CCFLAGS='-DGOODBYE')

One way to combine these object files into the resulting program would be to call the Program builder with the
names of the object files listed as sources:

Object('hello.c', CCFLAGS='-DHELLO')
Object('goodbye.c', CCFLAGS='-DGOODBYE')
Program(['hello.o', 'goodbye.o'])

The problem with specifying the names as strings is that our SConstruct file is no longer portable across operating
systems. It won't, for example, work on Windows because the object files there would be named hello.obj and
goodbye.obj, not hello.o and goodbye.o.

A better solution is to assign the lists of targets returned by the calls to the Object builder to variables, which we
can then concatenate in our call to the Program builder:

hello_list = Object('hello.c', CCFLAGS='-DHELLO')
goodbye_list = Object('goodbye.c', CCFLAGS='-DGOODBYE')
Program(hello_list + goodbye_list)

Explicitly Creating File and Directory Nodes

22

This makes our SConstruct file portable again, the build output on Linux looking like:

% scons -Q
cc -o goodbye.o -c -DGOODBYE goodbye.c
cc -o hello.o -c -DHELLO hello.c
cc -o hello hello.o goodbye.o

And on Windows:

C:\>scons -Q
cl /Fogoodbye.obj /c goodbye.c -DGOODBYE
cl /Fohello.obj /c hello.c -DHELLO
link /nologo /OUT:hello.exe hello.obj goodbye.obj
embedManifestExeCheck(target, source, env)

We'll see examples of using the list of nodes returned by builder methods throughout the rest of this guide.

5.2. Explicitly Creating File and Directory
Nodes
It's worth mentioning here that SCons maintains a clear distinction between Nodes that represent files and Nodes that
represent directories. SCons supports File and Dir functions that, respectively, return a file or directory Node:

hello_c = File('hello.c')
Program(hello_c)

classes = Dir('classes')
Java(classes, 'src')

Normally, you don't need to call File or Dir directly, because calling a builder method automatically treats strings
as the names of files or directories, and translates them into the Node objects for you. The File and Dir functions
can come in handy in situations where you need to explicitly instruct SCons about the type of Node being passed to a
builder or other function, or unambiguously refer to a specific file in a directory tree.

There are also times when you may need to refer to an entry in a file system without knowing in advance whether
it's a file or a directory. For those situations, SCons also supports an Entry function, which returns a Node that can
represent either a file or a directory.

xyzzy = Entry('xyzzy')

The returned xyzzy Node will be turned into a file or directory Node the first time it is used by a builder method or
other function that requires one vs. the other.

5.3. Printing Node File Names
One of the most common things you can do with a Node is use it to print the file name that the node represents. Keep
in mind, though, that because the object returned by a builder call is a list of Nodes, you must use Python subscripts
to fetch individual Nodes from the list. For example, the following SConstruct file:

Using a Node's File Name as a String

23

object_list = Object('hello.c')
program_list = Program(object_list)
print("The object file is: %s"%object_list[0])
print("The program file is: %s"%program_list[0])

Would print the following file names on a POSIX system:

% scons -Q
The object file is: hello.o
The program file is: hello
cc -o hello.o -c hello.c
cc -o hello hello.o

And the following file names on a Windows system:

C:\>scons -Q
The object file is: hello.obj
The program file is: hello.exe
cl /Fohello.obj /c hello.c /nologo
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)

Note that in the above example, the object_list[0] extracts an actual Node object from the list, and the Python
print function converts the object to a string for printing.

5.4. Using a Node's File Name as a String
Printing a Node's name as described in the previous section works because the string representation of a Node object
is the name of the file. If you want to do something other than print the name of the file, you can fetch it by using the
builtin Python str function. For example, if you want to use the Python os.path.exists to figure out whether
a file exists while the SConstruct file is being read and executed, you can fetch the string as follows:

import os.path
program_list = Program('hello.c')
program_name = str(program_list[0])
if not os.path.exists(program_name):
 print("%s does not exist!"%program_name)

Which executes as follows on a POSIX system:

% scons -Q
hello does not exist!
cc -o hello.o -c hello.c
cc -o hello hello.o

5.5. GetBuildPath: Getting the Path From a
Node or String
env.GetBuildPath(file_or_list) returns the path of a Node or a string representing a path. It can also take
a list of Nodes and/or strings, and returns the list of paths. If passed a single Node, the result is the same as calling

GetBuildPath: Getting the Path From a Node or
String

24

str(node) (see above). The string(s) can have embedded construction variables, which are expanded as usual, using
the calling environment's set of variables. The paths can be files or directories, and do not have to exist.

env=Environment(VAR="value")
n=File("foo.c")
print(env.GetBuildPath([n, "sub/dir/$VAR"]))

Would print the following file names:

% scons -Q
['foo.c', 'sub/dir/value']
scons: `.' is up to date.

There is also a function version of GetBuildPath which can be called without an Environment; that uses the
default SCons Environment to do substitution on any string arguments.

6 Dependencies

So far we've seen how SCons handles one-time builds. But one of the main functions of a build tool like SCons is to
rebuild only what is necessary when source files change--or, put another way, SCons should not waste time rebuilding
things that don't need to be rebuilt. You can see this at work simply by re-invoking SCons after building our simple
hello example:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q
scons: `.' is up to date.

The second time it is executed, SCons realizes that the hello program is up-to-date with respect to the current
hello.c source file, and avoids rebuilding it. You can see this more clearly by naming the hello program explicitly
on the command line:

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello
scons: `hello' is up to date.

Note that SCons reports "...is up to date" only for target files named explicitly on the command line, to
avoid cluttering the output.

6.1. Deciding When an Input File Has Changed:
the Decider Function
Another aspect of avoiding unnecessary rebuilds is the fundamental build tool behavior of rebuilding things when an
input file changes, so that the built software is up to date. By default, SCons keeps track of this through a content
signature, or hash, of the contents of each file, although you can easily configure SCons to use the modification times
(or time stamps) instead. You can even write your own Python function for deciding if an input file should trigger
a rebuild.

Using Content Signatures to Decide if a File Has Changed

26

6.1.1. Using Content Signatures to Decide if a File Has
Changed
By default, SCons uses a cryptographic hash of the file's contents, not the file's modification time, to decide whether
a file has changed. This means that you may be surprised by the default SCons behavior if you are used to the Make
convention of forcing a rebuild by updating the file's modification time (using the touch command, for example):

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% touch hello.c
% scons -Q hello
scons: `hello' is up to date.

Even though the file's modification time has changed, SCons realizes that the contents of the hello.c file have
not changed, and therefore that the hello program need not be rebuilt. This avoids unnecessary rebuilds when, for
example, someone rewrites the contents of a file without making a change. But if the contents of the file really do
change, then SCons detects the change and rebuilds the program as required:

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% [CHANGE THE CONTENTS OF hello.c]
% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o

Note that you can, if you wish, specify the default behavior of using content signatures explicitly, using the Decider
function as follows:

Program('hello.c')
Decider('content')

You can also use the string 'MD5' as a synonym for 'content' when calling the Decider function - this older
name is deprecated since SCons now supports a choice of hash functions, not just the MD5 function.

6.1.1.1. Ramifications of Using Content Signatures

Using content signatures to decide if an input file has changed has one surprising benefit: if a source file has been
changed in such a way that the contents of the rebuilt target file(s) will be exactly the same as the last time the file
was built, then any "downstream" target files that depend on the rebuilt-but-not-changed target file actually need not
be rebuilt.

So if, for example, a user were to only change a comment in a hello.c file, then the rebuilt hello.o file would
be exactly the same as the one previously built (assuming the compiler doesn't put any build-specific information in
the object file). SCons would then realize that it would not need to rebuild the hello program as follows:

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% [CHANGE A COMMENT IN hello.c]
% scons -Q hello
cc -o hello.o -c hello.c

Using Time Stamps to Decide If a File Has Changed

27

scons: `hello' is up to date.

In essence, SCons "short-circuits" any dependent builds when it realizes that a target file has been rebuilt to exactly
the same file as the last build. This does take some extra processing time to read the contents of the target (hello.o)
file, but often saves time when the rebuild that was avoided would have been time-consuming and expensive.

6.1.2. Using Time Stamps to Decide If a File Has
Changed
If you prefer, you can configure SCons to use the modification time of a file, not the file contents, when deciding if a
target needs to be rebuilt. SCons gives you two ways to use time stamps to decide if an input file has changed since
the last time a target has been built.

The most familiar way to use time stamps is the way Make does: that is, have SCons decide that a target must be rebuilt
if a source file's modification time is newer than the target file. To do this, call the Decider function as follows:

Object('hello.c')
Decider('timestamp-newer')

This makes SCons act like Make when a file's modification time is updated (using the touch command, for example):

% scons -Q hello.o
cc -o hello.o -c hello.c
% touch hello.c
% scons -Q hello.o
cc -o hello.o -c hello.c

And, in fact, because this behavior is the same as the behavior of Make, you can also use the string 'make' as a
synonym for 'timestamp-newer' when calling the Decider function:

Object('hello.c')
Decider('make')

One drawback to using times stamps exactly like Make is that if an input file's modification time suddenly becomes
older than a target file, the target file will not be rebuilt. This can happen if an old copy of a source file is restored
from a backup archive, for example. The contents of the restored file will likely be different than they were the last
time a dependent target was built, but the target won't be rebuilt because the modification time of the source file is
not newer than the target.

Because SCons actually stores information about the source files' time stamps whenever a target is built, it can handle
this situation by checking for an exact match of the source file time stamp, instead of just whether or not the source file
is newer than the target file. To do this, specify the argument 'timestamp-match' when calling the Decider
function:

Object('hello.c')
Decider('timestamp-match')

When configured this way, SCons will rebuild a target whenever a source file's modification time has changed. So if
we use the touch -t option to change the modification time of hello.c to an old date (January 1, 1989), SCons
will still rebuild the target file:

Deciding If a File Has Changed Using Both MD
Signatures and Time Stamps

28

% scons -Q hello.o
cc -o hello.o -c hello.c
% touch -t 198901010000 hello.c
% scons -Q hello.o
cc -o hello.o -c hello.c

In general, the only reason to prefer timestamp-newer instead of timestamp-match, would be if you have
some specific reason to require this Make-like behavior of not rebuilding a target when an otherwise-modified source
file is older.

6.1.3. Deciding If a File Has Changed Using Both MD
Signatures and Time Stamps
As a performance enhancement, SCons provides a way to use a file's content signature, but to read those contents
only when the file's timestamp has changed. To do this, call the Decider function with 'content-timestamp'
argument as follows:

Program('hello.c')
Decider('content-timestamp')

So configured, SCons will still behave like it does when using Decider('content'):

% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% touch hello.c
% scons -Q hello
scons: `hello' is up to date.
% edit hello.c
 [CHANGE THE CONTENTS OF hello.c]
% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o

However, the second call to SCons in the above output, when the build is up-to-date, will have been performed by
simply looking at the modification time of the hello.c file, not by opening it and performing a signature calcuation
on its contents. This can significantly speed up many up-to-date builds.

The only drawback to using Decider('content-timestamp') is that SCons will not rebuild a target file
if a source file was modified within one second of the last time SCons built the file. While most developers are
programming, this isn't a problem in practice, since it's unlikely that someone will have built and then thought quickly
enough to make a substantive change to a source file within one second. Certain build scripts or continuous integration
tools may, however, rely on the ability to apply changes to files automatically and then rebuild as quickly as possible,
in which case use of Decider('content-timestamp') may not be appropriate.

6.1.4. Extending SCons: Writing Your Own Custom
Decider Function
The different string values that we've passed to the Decider function are essentially used by SCons to pick one of
several specific internal functions that implement various ways of deciding if a dependency (usually a source file)

Extending SCons: Writing Your Own Custom Decider
Function

29

has changed since a target file has been built. As it turns out, you can also supply your own function to decide if a
dependency has changed.

For example, suppose we have an input file that contains a lot of data, in some specific regular format, that is used
to rebuild a lot of different target files, but each target file really only depends on one particular section of the input
file. We'd like to have each target file depend on only its section of the input file. However, since the input file may
contain a lot of data, we want to open the input file only if its timestamp has changed. This could be done with a custom
Decider function that might look something like this:

Program('hello.c')
def decide_if_changed(dependency, target, prev_ni, repo_node=None):
 if dependency.get_timestamp() != prev_ni.timestamp:
 dep = str(dependency)
 tgt = str(target)
 if specific_part_of_file_has_changed(dep, tgt):
 return True
 return False
Decider(decide_if_changed)

Note that in the function definition, the dependency (input file) is the first argument, and then the target. Both
of these are passed to the functions as SCons Node objects, which we convert to strings using the Python str().

The third argument, prev_ni, is an object that holds the content signature and/or timestamp information that was
recorded about the dependency the last time the target was built. A prev_ni object can hold different information,
depending on the type of thing that the dependency argument represents. For normal files, the prev_ni object
has the following attributes:

csig
The content signature: a cryptgraphic hash, or checksum, of the file contents of the dependency file the last
time the target was built.

size
The size in bytes of the dependency file the last time the target was built.

timestamp
The modification time of the dependency file the last time the target was built.

These attributes may not be present at the time of the first run. Without any prior build, no targets have been created
and no .sconsign DB file exists yet. So you should always check whether the prev_ni attribute in question is
available (use the Python hasattr method or a try-except block).

The fourth argument repo_node is the Node to use if it is not None when comparing BuildInfo. This is typically
only set when the target node only exists in a Repository

Note that ignoring some of the arguments in your custom Decider function is a perfectly normal thing to do, if they
don't impact the way you want to decide if the dependency file has changed.

We finally present a small example for a csig-based decider function. Note how the signature information for the
dependency file has to get initialized via get_csig during each function call (this is mandatory!).

env = Environment()

Mixing Different Ways of Deciding If a File Has
Changed

30

def config_file_decider(dependency, target, prev_ni, repo_node=None):
 import os.path

 # We always have to init the .csig value...
 dep_csig = dependency.get_csig()
 # .csig may not exist, because no target was built yet...
 if not prev_ni.hasattr("csig"):
 return True
 # Target file may not exist yet
 if not os.path.exists(str(target.abspath)):
 return True
 if dep_csig != prev_ni.csig:
 # Some change on source file => update installed one
 return True
 return False

def update_file():
 with open("test.txt", "a") as f:
 f.write("some line\n")

update_file()

Activate our own decider function
env.Decider(config_file_decider)

env.Install("install", "test.txt")

6.1.5. Mixing Different Ways of Deciding If a File Has
Changed
The previous examples have all demonstrated calling the global Decider function to configure all dependency
decisions that SCons makes. Sometimes, however, you want to be able to configure different decision-making for
different targets. When that's necessary, you can use the env.Decider method to affect only the configuration
decisions for targets built with a specific construction environment.

For example, if we arbitrarily want to build one program using content signatures and another using file modification
times from the same source we might configure it this way:

env1 = Environment(CPPPATH = ['.'])
env2 = env1.Clone()
env2.Decider('timestamp-match')
env1.Program('prog-content', 'program1.c')
env2.Program('prog-timestamp', 'program2.c')

If both of the programs include the same inc.h file, then updating the modification time of inc.h (using the touch
command) will cause only prog-timestamp to be rebuilt:

% scons -Q
cc -o program1.o -c -I. program1.c

Implicit Dependencies: The $CPPPATH Construction
Variable

31

cc -o prog-content program1.o
cc -o program2.o -c -I. program2.c
cc -o prog-timestamp program2.o
% touch inc.h
% scons -Q
cc -o program2.o -c -I. program2.c
cc -o prog-timestamp program2.o

6.2. Implicit Dependencies: The $CPPPATH
Construction Variable
Now suppose that our "Hello, World!" program actually has an #include line to include the hello.h file in the
compilation:

#include <hello.h>
int
main()
{
 printf("Hello, %s!\n", string);
}

And, for completeness, the hello.h file looks like this:

#define string "world"

In this case, we want SCons to recognize that, if the contents of the hello.h file change, the hello program must
be recompiled. To do this, we need to modify the SConstruct file like so:

Program('hello.c', CPPPATH='.')

The $CPPPATH value tells SCons to look in the current directory ('.') for any files included by C source files (.c
or .h files). With this assignment in the SConstruct file:

% scons -Q hello
cc -o hello.o -c -I. hello.c
cc -o hello hello.o
% scons -Q hello
scons: `hello' is up to date.
% [CHANGE THE CONTENTS OF hello.h]
% scons -Q hello
cc -o hello.o -c -I. hello.c
cc -o hello hello.o

First, notice that SCons constructed the -I. argument from the '.' in the $CPPPATH variable so that the compilation
would find the hello.h file in the local directory.

Second, realize that SCons knows that the hello program must be rebuilt because it scans the contents of the
hello.c file for the #include lines that indicate another file is being included in the compilation. SCons records

Caching Implicit Dependencies

32

these as implicit dependencies of the target file, Consequently, when the hello.h file changes, SCons realizes that
the hello.c file includes it, and rebuilds the resulting hello program that depends on both the hello.c and
hello.h files.

Like the $LIBPATH variable, the $CPPPATH variable may be a list of directories, or a string separated by the system-
specific path separation character (':' on POSIX/Linux, ';' on Windows). Either way, SCons creates the right command-
line options so that the following example:

Program('hello.c', CPPPATH = ['include', '/home/project/inc'])

Will look like this on POSIX or Linux:

% scons -Q hello
cc -o hello.o -c -Iinclude -I/home/project/inc hello.c
cc -o hello hello.o

And like this on Windows:

C:\>scons -Q hello.exe
cl /Fohello.obj /c hello.c /nologo /Iinclude /I\home\project\inc
link /nologo /OUT:hello.exe hello.obj
embedManifestExeCheck(target, source, env)

6.3. Caching Implicit Dependencies
Scanning each file for #include lines does take some extra processing time. When you're doing a full build of a
large system, the scanning time is usually a very small percentage of the overall time spent on the build. You're most
likely to notice the scanning time, however, when you rebuild all or part of a large system: SCons will likely take some
extra time to "think about" what must be built before it issues the first build command (or decides that everything is
up to date and nothing must be rebuilt).

In practice, having SCons scan files saves time relative to the amount of potential time lost to tracking down subtle
problems introduced by incorrect dependencies. Nevertheless, the "waiting time" while SCons scans files can annoy
individual developers waiting for their builds to finish. Consequently, SCons lets you cache the implicit dependencies
that its scanners find, for use by later builds. You can do this by specifying the --implicit-cache option on
the command line:

% scons -Q --implicit-cache hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello
scons: `hello' is up to date.

If you don't want to specify --implicit-cache on the command line each time, you can make it the default
behavior for your build by setting the implicit_cache option in an SConscript file:

SetOption('implicit_cache', 1)

SCons does not cache implicit dependencies like this by default because the --implicit-cache causes SCons
to simply use the implicit dependencies stored during the last run, without any checking for whether or not
those dependencies are still correct. Specifically, this means --implicit-cache instructs SCons to not rebuild
"correctly" in the following cases:

The --implicit-deps-changed Option

33

• When --implicit-cache is used, SCons will ignore any changes that may have been made to search paths
(like $CPPPATH or $LIBPATH,). This can lead to SCons not rebuilding a file if a change to $CPPPATH would
normally cause a different, same-named file from a different directory to be used.

• When --implicit-cache is used, SCons will not detect if a same-named file has been added to a directory that
is earlier in the search path than the directory in which the file was found last time.

6.3.1. The --implicit-deps-changed Option
When using cached implicit dependencies, sometimes you want to "start fresh" and have SCons re-scan the files for
which it previously cached the dependencies. For example, if you have recently installed a new version of external
code that you use for compilation, the external header files will have changed and the previously-cached implicit
dependencies will be out of date. You can update them by running SCons with the --implicit-deps-changed
option:

% scons -Q --implicit-deps-changed hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello
scons: `hello' is up to date.

In this case, SCons will re-scan all of the implicit dependencies and cache updated copies of the information.

6.3.2. The --implicit-deps-unchanged Option
By default when caching dependencies, SCons notices when a file has been modified and re-scans the file for any
updated implicit dependency information. Sometimes, however, you may want to force SCons to use the cached
implicit dependencies, even if the source files changed. This can speed up a build for example, when you have changed
your source files but know that you haven't changed any #include lines. In this case, you can use the --implicit-
deps-unchanged option:

% scons -Q --implicit-deps-unchanged hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello
scons: `hello' is up to date.

In this case, SCons will assume that the cached implicit dependencies are correct and will not bother to re-scan changed
files. For typical builds after small, incremental changes to source files, the savings may not be very big, but sometimes
every bit of improved performance counts.

6.4. Explicit Dependencies: the Depends
Function
Sometimes a file depends on another file that is not detected by an SCons scanner. For this situation, SCons allows
you to specific explicitly that one file depends on another file, and must be rebuilt whenever that file changes. This
is specified using the Depends method:

hello = Program('hello.c')
Depends(hello, 'other_file')

Dependencies From External Files: the ParseDepends
Function

34

% scons -Q hello
cc -c hello.c -o hello.o
cc -o hello hello.o
% scons -Q hello
scons: `hello' is up to date.
% edit other_file
 [CHANGE THE CONTENTS OF other_file]
% scons -Q hello
cc -c hello.c -o hello.o
cc -o hello hello.o

Note that the dependency (the second argument to Depends) may also be a list of Node objects (for example, as
returned by a call to a Builder):

hello = Program('hello.c')
goodbye = Program('goodbye.c')
Depends(hello, goodbye)

in which case the dependency or dependencies will be built before the target(s):

% scons -Q hello
cc -c goodbye.c -o goodbye.o
cc -o goodbye goodbye.o
cc -c hello.c -o hello.o
cc -o hello hello.o

6.5. Dependencies From External Files: the
ParseDepends Function
SCons has built-in scanners for a number of languages. Sometimes these scanners fail to extract certain implicit
dependencies due to limitations of the scanner implementation.

The following example illustrates a case where the built-in C scanner is unable to extract the implicit dependency
on a header file.

#define FOO_HEADER <foo.h>
#include FOO_HEADER

int main() {
 return FOO;
}

% scons -Q
cc -o hello.o -c -I. hello.c
cc -o hello hello.o
% [CHANGE CONTENTS OF foo.h]
% scons -Q

Ignoring Dependencies: the Ignore Function

35

scons: `.' is up to date.

Apparently, the scanner does not know about the header dependency. Not being a full-fledged C preprocessor, the
scanner does not expand the macro.

In these cases, you may also use the compiler to extract the implicit dependencies. ParseDepends can parse the
contents of the compiler output in the style of Make, and explicitly establish all of the listed dependencies.

The following example uses ParseDepends to process a compiler generated dependency file which is generated as
a side effect during compilation of the object file:

obj = Object('hello.c', CCFLAGS='-MD -MF hello.d', CPPPATH='.')
SideEffect('hello.d', obj)
ParseDepends('hello.d')
Program('hello', obj)

% scons -Q
cc -o hello.o -c -MD -MF hello.d -I. hello.c
cc -o hello hello.o
% [CHANGE CONTENTS OF foo.h]
% scons -Q
cc -o hello.o -c -MD -MF hello.d -I. hello.c

Parsing dependencies from a compiler-generated .d file has a chicken-and-egg problem, that causes unnecessary
rebuilds:

% scons -Q
cc -o hello.o -c -MD -MF hello.d -I. hello.c
cc -o hello hello.o
% scons -Q --debug=explain
scons: rebuilding `hello.o' because `foo.h' is a new dependency
cc -o hello.o -c -MD -MF hello.d -I. hello.c
% scons -Q
scons: `.' is up to date.

In the first pass, the dependency file is generated while the object file is compiled. At that time, SCons does not know
about the dependency on foo.h. In the second pass, the object file is regenerated because foo.h is detected as a
new dependency.

ParseDepends immediately reads the specified file at invocation time and just returns if the file does not exist. A
dependency file generated during the build process is not automatically parsed again. Hence, the compiler-extracted
dependencies are not stored in the signature database during the same build pass. This limitation of ParseDepends
leads to unnecessary recompilations. Therefore, ParseDepends should only be used if scanners are not available
for the employed language or not powerful enough for the specific task.

6.6. Ignoring Dependencies: the Ignore
Function
Sometimes it makes sense to not rebuild a program, even if a dependency file changes. In this case, you would tell
SCons specifically to ignore a dependency using the Ignore function as follows:

Order-Only Dependencies: the Requires Function

36

hello_obj=Object('hello.c')
hello = Program(hello_obj)
Ignore(hello_obj, 'hello.h')

% scons -Q hello
cc -c -o hello.o hello.c
cc -o hello hello.o
% scons -Q hello
scons: `hello' is up to date.
% edit hello.h
 [CHANGE THE CONTENTS OF hello.h]
% scons -Q hello
scons: `hello' is up to date.

Now, the above example is a little contrived, because it's hard to imagine a real-world situation where you wouldn't
want to rebuild hello if the hello.h file changed. A more realistic example might be if the hello program is
being built in a directory that is shared between multiple systems that have different copies of the stdio.h include
file. In that case, SCons would notice the differences between the different systems' copies of stdio.h and would
rebuild hello each time you change systems. You could avoid these rebuilds as follows:

hello = Program('hello.c', CPPPATH=['/usr/include'])
Ignore(hello, '/usr/include/stdio.h')

Ignore can also be used to prevent a generated file from being built by default. This is due to the fact that directories
depend on their contents. So to ignore a generated file from the default build, you specify that the directory should
ignore the generated file. Note that the file will still be built if the user specifically requests the target on scons command
line, or if the file is a dependency of another file which is requested and/or is built by default.

hello_obj=Object('hello.c')
hello = Program(hello_obj)
Ignore('.',[hello,hello_obj])

% scons -Q
scons: `.' is up to date.
% scons -Q hello
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello
scons: `hello' is up to date.

6.7. Order-Only Dependencies: the Requires
Function
Occasionally, it may be useful to specify that a certain file or directory must, if necessary, be built or created before
some other target is built, but that changes to that file or directory do not require that the target itself be rebuilt. Such

Order-Only Dependencies: the Requires Function

37

a relationship is called an order-only dependency because it only affects the order in which things must be built--the
dependency before the target--but it is not a strict dependency relationship because the target should not change in
response to changes in the dependent file.

For example, suppose that you want to create a file every time you run a build that identifies the time the build was
performed, the version number, etc., and which is included in every program that you build. The version file's contents
will change every build. If you specify a normal dependency relationship, then every program that depends on that
file would be rebuilt every time you ran SCons. For example, we could use some Python code in a SConstruct file
to create a new version.c file with a string containing the current date every time we run SCons, and then link a
program with the resulting object file by listing version.c in the sources:

import time

version_c_text = """
char *date = "%s";
""" % time.ctime(time.time())
open('version.c', 'w').write(version_c_text)

hello = Program(['hello.c', 'version.c'])

If we list version.c as an actual source file, though, then the version.o file will get rebuilt every time we run
SCons (because the SConstruct file itself changes the contents of version.c) and the hello executable will
get re-linked every time (because the version.o file changes):

% scons -Q hello
cc -o hello.o -c hello.c
cc -o version.o -c version.c
cc -o hello hello.o version.o
% sleep 1
% scons -Q hello
cc -o version.o -c version.c
cc -o hello hello.o version.o
% sleep 1
% scons -Q hello
cc -o version.o -c version.c
cc -o hello hello.o version.o

(Note that for the above example to work, we sleep for one second in between each run, so that the SConstruct file
will create a version.c file with a time string that's one second later than the previous run.)

One solution is to use the Requires function to specify that the version.o must be rebuilt before it is used by the
link step, but that changes to version.o should not actually cause the hello executable to be re-linked:

import time

version_c_text = """
char *date = "%s";
""" % time.ctime(time.time())
open('version.c', 'w').write(version_c_text)

version_obj = Object('version.c')

The AlwaysBuild Function

38

hello = Program('hello.c',
 LINKFLAGS = str(version_obj[0]))

Requires(hello, version_obj)

Notice that because we can no longer list version.c as one of the sources for the hello program, we have to find
some other way to get it into the link command line. For this example, we're cheating a bit and stuffing the object
file name (extracted from version_obj list returned by the Object builder call) into the $LINKFLAGS variable,
because $LINKFLAGS is already included in the $LINKCOM command line.

With these changes, we get the desired behavior of only re-linking the hello executable when the hello.c has
changed, even though the version.o is rebuilt (because the SConstruct file still changes the version.c
contents directly each run):

% scons -Q hello
cc -o version.o -c version.c
cc -o hello.o -c hello.c
cc -o hello version.o hello.o
% sleep 1
% scons -Q hello
cc -o version.o -c version.c
scons: `hello' is up to date.
% sleep 1
% [CHANGE THE CONTENTS OF hello.c]
% scons -Q hello
cc -o version.o -c version.c
cc -o hello.o -c hello.c
cc -o hello version.o hello.o
% sleep 1
% scons -Q hello
cc -o version.o -c version.c
scons: `hello' is up to date.

6.8. The AlwaysBuild Function
How SCons handles dependencies can also be affected by the AlwaysBuild method. When a file is passed to the
AlwaysBuild method, like so:

hello = Program('hello.c')
AlwaysBuild(hello)

Then the specified target file (hello in our example) will always be considered out-of-date and rebuilt whenever that
target file is evaluated while walking the dependency graph:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q
cc -o hello hello.o

The AlwaysBuild function has a somewhat misleading name, because it does not actually mean the target file will
be rebuilt every single time SCons is invoked. Instead, it means that the target will, in fact, be rebuilt whenever the

The AlwaysBuild Function

39

target file is encountered while evaluating the targets specified on the command line (and their dependencies). So
specifying some other target on the command line, a target that does not itself depend on the AlwaysBuild target,
will still be rebuilt only if it's out-of-date with respect to its dependencies:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q hello.o
scons: `hello.o' is up to date.

7 Environments

An environment is a collection of values that can affect how a program executes. SCons distinguishes between
three different types of environments that can affect the behavior of SCons itself (subject to the configuration in the
SConscript files), as well as the compilers and other tools it executes:

External Environment
The External Environment is the set of variables in the user's environment at the time the user runs SCons. These
variables are not automatically part of an SCons build but are available to be examined if needed. See Section 7.1,
“Using Values From the External Environment”, below.

Construction Environment
A Construction Environment is a distinct object created within a SConscript file and which contains values
that affect how SCons decides what action to use to build a target, and even to define which targets should
be built from which sources. One of the most powerful features of SCons is the ability to create multiple
construction environments, including the ability to clone a new, customized construction environment from an
existing construction environment. See Section 7.2, “Construction Environments”, below.

Execution Environment
An Execution Environment is the values that SCons sets when executing an external command (such as a compiler
or linker) to build one or more targets. Note that this is not the same as the external environment (see above). See
Section 7.3, “Controlling the Execution Environment for Issued Commands”, below.

Unlike Make, SCons does not automatically copy or import values between different environments (with the exception
of explicit clones of construction environments, which inherit the values from their parent). This is a deliberate design
choice to make sure that builds are, by default, repeatable regardless of the values in the user's external environment.
This avoids a whole class of problems with builds where a developer's local build works because a custom variable
setting causes a different compiler or build option to be used, but the checked-in change breaks the official build
because it uses different environment variable settings.

Note that the SConscript writer can easily arrange for variables to be copied or imported between environments,
and this is often very useful (or even downright necessary) to make it easy for developers to customize the build in
appropriate ways. The point is not that copying variables between different environments is evil and must always be
avoided. Instead, it should be up to the implementer of the build system to make conscious choices about how and
when to import a variable from one environment to another, making informed decisions about striking the right balance
between making the build repeatable on the one hand and convenient to use on the other.

Using Values From the External Environment

41

Sidebar: Python Dictionaries

If you're not familiar with the Python programming language, we need to talk a little bit about the Python
dictionary data type. A dictionary (also known by terms such as mapping, associative array and key-value
store) associates keys with values, such that asking the dict about a key gives you back the associated value
and assigning to a key creates the association - either a new setting if the key was unknown, or replacing the
previous association if the key was already in the dictionary. Values can be retrieved using item access (the
key name in square brackets ([])), and dictionaries also provide a method named get which responds with
a default value, either None or a value you supply as the second argument, if the key is not in the dictionary,
which avoids failing in that case. The syntax for initializing a dictionary uses curly braces ({}). Here are some
simple examples (inspired by those in the official Python tutorial) using syntax that indicates interacting with
the Python interpreter (>>> is the interpreter prompt) - you can try these out:

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> print(tel)
{'jack': 4098, 'guido': 4127, 'irv': 4127}
>>> 'guido' in tel
True
>>> print(tel['jack'])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'jack'
>>> print(tel.get('jack'))
None

Construction environments are written to behave like a Python dictionary, and the $ENV construction variable in
a construction environment is a Python dictionary. The os.environ value that Python uses to make available
the external environment is also a dictionary. We will need these concepts in this chapter and throughout the
rest of this guide.

7.1. Using Values From the External
Environment
The external environment variable settings that the user has in force when executing SCons are available in the Python
os.environ dictionary. That syntax means the environ attribute of the os module. In Python, to access the
contents of a module you must first import it - so you would include the import os statement to any SConscript
file in which you want to use values from the user's external environment.

import os

print("Shell is", os.environ['SHELL'])

Construction Environments

42

More usefully, you can use the os.environ dictionary in your SConscript files to initialize construction
environments with values from the user's external environment. Read on to the next section for information on how
to do this.

7.2. Construction Environments
It is rare that all of the software in a large, complicated system needs to be built exactly the same way. For example,
different source files may need different options enabled on the command line, or different executable programs need
to be linked with different libraries. SCons accommodates these different build requirements by allowing you to create
and configure multiple construction environments that control how the software is built. A construction environment
is an object that has a number of associated construction variables, each with a name and a value, just like a dictionary.
(A construction environment also has an attached set of Builder methods, about which we'll learn more later.)

7.2.1. Creating a Construction Environment: the
Environment Function
A construction environment is created by the Environment method:

env = Environment()

By default, SCons initializes every new construction environment with a set of construction variables based on the tools
that it finds on your system, plus the default set of builder methods necessary for using those tools. The construction
variables are initialized with values describing the C compiler, the Fortran compiler, the linker, etc., as well as the
command lines to invoke them.

When you initialize a construction environment you can set the values of the environment's construction variables to
control how a program is built. For example:

env = Environment(CC='gcc', CCFLAGS='-O2')
env.Program('foo.c')

The construction environment in this example is still initialized with the same default construction variable values,
except that the user has explicitly specified use of the GNU C compiler gcc, and that the -O2 (optimization level two)
flag should be used when compiling the object file. In other words, the explicit initializations of $CC and $CCFLAGS
override the default values in the newly-created construction environment. So a run from this example would look like:

% scons -Q
gcc -o foo.o -c -O2 foo.c
gcc -o foo foo.o

7.2.2. Fetching Values From a Construction Environment
You can fetch individual values, known as Construction Variables, using the same syntax used for accessing individual
named items in a Python dictionary:

env = Environment()
print("CC is: %s" % env['CC'])

Fetching Values From a Construction Environment

43

print("LATEX is: %s" % env.get('LATEX', None))

This example SConstruct file doesn't contain instructions for building any targets, but because it's still a valid
SConstruct it will be evaluated and the Python print calls will output the values of $CC and $LATEX for us
(remember using the .get() method for fetching means we get a default value back, rather than a failure, if the
variable is not set):

% scons -Q
CC is: cc
LATEX is: None
scons: `.' is up to date.

A construction environment is actually an object with associated methods and attributes. If you want to have direct
access to only the dictionary of construction variables you can fetch this using the env.Dictionary method
(although it's rarely necessary to use this method):

env = Environment(FOO='foo', BAR='bar')
cvars = env.Dictionary()
for key in ['OBJSUFFIX', 'LIBSUFFIX', 'PROGSUFFIX']:
 print("key = %s, value = %s" % (key, cvars[key]))

This SConstruct file will print the specified dictionary items for us on POSIX systems as follows:

% scons -Q
key = OBJSUFFIX, value = .o
key = LIBSUFFIX, value = .a
key = PROGSUFFIX, value =
scons: `.' is up to date.

And on Windows:

C:\>scons -Q
key = OBJSUFFIX, value = .obj
key = LIBSUFFIX, value = .lib
key = PROGSUFFIX, value = .exe
scons: `.' is up to date.

If you want to loop and print the values of all of the construction variables in a construction environment, the Python
code to do that in sorted order might look something like:

env = Environment()
for item in sorted(env.Dictionary().items()):
 print("construction variable = '%s', value = '%s'" % item)

It should be noted that for the previous example, there is actually a construction environment method that does the
same thing more simply, and tries to format the output nicely as well:

env = Environment()
print(env.Dump())

Expanding Values From a Construction Environment: the
subst Method

44

7.2.3. Expanding Values From a Construction
Environment: the subst Method
Another way to get information from a construction environment is to use the subst method on a string containing
$ expansions of construction variable names. As a simple example, the example from the previous section that used
env['CC'] to fetch the value of $CC could also be written as:

env = Environment()
print("CC is: %s" % env.subst('$CC'))

One advantage of using subst to expand strings is that construction variables in the result get re-expanded until there
are no expansions left in the string. So a simple fetch of a value like $CCCOM:

env = Environment(CCFLAGS='-DFOO')
print("CCCOM is: %s" % env['CCCOM'])

Will print the unexpanded value of $CCCOM, showing us the construction variables that still need to be expanded:

% scons -Q
CCCOM is: $CC $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS -c -o $TARGET $SOURCES
scons: `.' is up to date.

Calling the subst method on $CCOM, however:

env = Environment(CCFLAGS='-DFOO')
print("CCCOM is: %s" % env.subst('$CCCOM'))

Will recursively expand all of the construction variables prefixed with $ (dollar signs), showing us the final output:

% scons -Q
CCCOM is: gcc -DFOO -c -o
scons: `.' is up to date.

Note that because we're not expanding this in the context of building something there are no target or source files for
$TARGET and $SOURCES to expand.

7.2.4. Handling Problems With Value Expansion
If a problem occurs when expanding a construction variable, by default it is expanded to '' (an empty string), and
will not cause scons to fail.

env = Environment()
print("value is: %s"%env.subst('->$MISSING<-'))

Controlling the Default Construction Environment: the
DefaultEnvironment Function

45

% scons -Q
value is: -><-
scons: `.' is up to date.

This default behaviour can be changed using the AllowSubstExceptions function. When a problem occurs with
a variable expansion it generates an exception, and the AllowSubstExceptions function controls which of these
exceptions are actually fatal and which are allowed to occur safely. By default, NameError and IndexError are
the two exceptions that are allowed to occur: so instead of causing scons to fail, these are caught, the variable expanded
to '' and scons execution continues. To require that all construction variable names exist, and that indexes out of
range are not allowed, call AllowSubstExceptions with no extra arguments.

AllowSubstExceptions()
env = Environment()
print("value is: %s"%env.subst('->$MISSING<-'))

% scons -Q

scons: *** NameError `name 'MISSING' is not defined' trying to evaluate `$MISSING'
File "/home/my/project/SConstruct", line 3, in <module>

This can also be used to allow other exceptions that might occur, most usefully with the ${...} construction
variable syntax. For example, this would allow zero-division to occur in a variable expansion in addition to the default
exceptions allowed

AllowSubstExceptions(IndexError, NameError, ZeroDivisionError)
env = Environment()
print("value is: %s"%env.subst('->${1 / 0}<-'))

% scons -Q
value is: -><-
scons: `.' is up to date.

If AllowSubstExceptions is called multiple times, each call completely overwrites the previous list of allowed
exceptions.

7.2.5. Controlling the Default Construction Environment:
the DefaultEnvironment Function
All of the Builder functions that we've introduced so far, like Program and Library, use a construction environment
that contains settings for the various compilers and other tools that SCons configures by default, or otherwise knows
about and has discovered on your system. If not invoked as methods of a specific construction environment, they use
the default construction environment The goal of the default construction environment is to make many configurations
"just work" to build software using readily available tools with a minimum of configuration changes.

If needed, you can control the default construction environment by using the DefaultEnvironment function to
initialize various settings by passing them as keyword arguments:

DefaultEnvironment(CC='/usr/local/bin/gcc')

Multiple Construction Environments

46

When configured as above, all calls to the Program or Object Builder will build object files with the /usr/
local/bin/gcc compiler.

The DefaultEnvironment function returns the initialized default construction environment object, which can
then be manipulated like any other construction environment (note that the default environment works like a singleton
- it can have only one instance - so the keyword arguments are processed only on the first call. On any subsequent call
the existing object is returned). So the following would be equivalent to the previous example, setting the $CC variable
to /usr/local/bin/gcc but as a separate step after the default construction environment has been initialized:

def_env = DefaultEnvironment()
def_env['CC'] = '/usr/local/bin/gcc'

One very common use of the DefaultEnvironment function is to speed up SCons initialization. As part of trying
to make most default configurations "just work," SCons will actually search the local system for installed compilers
and other utilities. This search can take time, especially on systems with slow or networked file systems. If you know
which compiler(s) and/or other utilities you want to configure, you can control the search that SCons performs by
specifying some specific tool modules with which to initialize the default construction environment:

def_env = DefaultEnvironment(tools=['gcc', 'gnulink'], CC='/usr/local/bin/gcc')

So the above example would tell SCons to explicitly configure the default environment to use its normal GNU Compiler
and GNU Linker settings (without having to search for them, or any other utilities for that matter), and specifically to
use the compiler found at /usr/local/bin/gcc.

7.2.6. Multiple Construction Environments
The real advantage of construction environments is that you can create as many different ones as you need, each
tailored to a different way to build some piece of software or other file. If, for example, we need to build one program
with the -O2 flag and another with the -g (debug) flag, we would do this like so:

opt = Environment(CCFLAGS='-O2')
dbg = Environment(CCFLAGS='-g')

opt.Program('foo', 'foo.c')

dbg.Program('bar', 'bar.c')

% scons -Q
cc -o bar.o -c -g bar.c
cc -o bar bar.o
cc -o foo.o -c -O2 foo.c
cc -o foo foo.o

We can even use multiple construction environments to build multiple versions of a single program. If you do this by
simply trying to use the Program builder with both environments, though, like this:

opt = Environment(CCFLAGS='-O2')
dbg = Environment(CCFLAGS='-g')

Making Copies of Construction Environments: the
Clone Method

47

opt.Program('foo', 'foo.c')

dbg.Program('foo', 'foo.c')

Then SCons generates the following error:

% scons -Q

scons: *** Two environments with different actions were specified for the same target: foo.o
File "/home/my/project/SConstruct", line 6, in <module>

This is because the two Program calls have each implicitly told SCons to generate an object file named foo.o, one
with a $CCFLAGS value of -O2 and one with a $CCFLAGS value of -g. SCons can't just decide that one of them
should take precedence over the other, so it generates the error. To avoid this problem, we must explicitly specify that
each environment compile foo.c to a separately-named object file using the Object builder, like so:

opt = Environment(CCFLAGS='-O2')
dbg = Environment(CCFLAGS='-g')

o = opt.Object('foo-opt', 'foo.c')
opt.Program(o)

d = dbg.Object('foo-dbg', 'foo.c')
dbg.Program(d)

Notice that each call to the Object builder returns a value, an internal SCons object that represents the object file
that will be built. We then use that object as input to the Program builder. This avoids having to specify explicitly
the object file name in multiple places, and makes for a compact, readable SConstruct file. Our SCons output then
looks like:

% scons -Q
cc -o foo-dbg.o -c -g foo.c
cc -o foo-dbg foo-dbg.o
cc -o foo-opt.o -c -O2 foo.c
cc -o foo-opt foo-opt.o

7.2.7. Making Copies of Construction Environments: the
Clone Method
Sometimes you want more than one construction environment to share the same values for one or more variables.
Rather than always having to repeat all of the common variables when you create each construction environment, you
can use the env.Clone method to create a copy of a construction environment.

Like the Environment call that creates a construction environment, the Clone method takes construction variable
assignments, which will override the values in the copied construction environment. For example, suppose we want
to use gcc to create three versions of a program, one optimized, one debug, and one with neither. We could do this
by creating a "base" construction environment that sets $CC to gcc, and then creating two copies, one which sets
$CCFLAGS for optimization and the other which sets $CCFLAGS for debugging:

env = Environment(CC='gcc')

Replacing Values: the Replace Method

48

opt = env.Clone(CCFLAGS='-O2')
dbg = env.Clone(CCFLAGS='-g')

env.Program('foo', 'foo.c')

o = opt.Object('foo-opt', 'foo.c')
opt.Program(o)

d = dbg.Object('foo-dbg', 'foo.c')
dbg.Program(d)

Then our output would look like:

% scons -Q
gcc -o foo.o -c foo.c
gcc -o foo foo.o
gcc -o foo-dbg.o -c -g foo.c
gcc -o foo-dbg foo-dbg.o
gcc -o foo-opt.o -c -O2 foo.c
gcc -o foo-opt foo-opt.o

7.2.8. Replacing Values: the Replace Method
You can replace existing construction variable values using the env.Replace method:

env = Environment(CCFLAGS='-DDEFINE1')
env.Replace(CCFLAGS='-DDEFINE2')
env.Program('foo.c')

The replacing value (-DDEFINE2 in the above example) completely replaces the value in the construction
environment:

% scons -Q
cc -o foo.o -c -DDEFINE2 foo.c
cc -o foo foo.o

You can safely call Replace for construction variables that don't exist in the construction environment:

env = Environment()
env.Replace(NEW_VARIABLE='xyzzy')
print("NEW_VARIABLE = %s" % env['NEW_VARIABLE'])

In this case, the construction variable simply gets added to the construction environment:

% scons -Q
NEW_VARIABLE = xyzzy
scons: `.' is up to date.

Because the variables aren't expanded until the construction environment is actually used to build the targets, and
because SCons function and method calls are order-independent, the last replacement "wins" and is used to build all
targets, regardless of the order in which the calls to Replace() are interspersed with calls to builder methods:

Setting Values Only If They're Not Already Defined: the
SetDefault Method

49

env = Environment(CCFLAGS='-DDEFINE1')
print("CCFLAGS = %s" % env['CCFLAGS'])
env.Program('foo.c')

env.Replace(CCFLAGS='-DDEFINE2')
print("CCFLAGS = %s" % env['CCFLAGS'])
env.Program('bar.c')

The timing of when the replacement actually occurs relative to when the targets get built becomes apparent if we run
scons without the -Q option:

% scons
scons: Reading SConscript files ...
CCFLAGS = -DDEFINE1
CCFLAGS = -DDEFINE2
scons: done reading SConscript files.
scons: Building targets ...
cc -o bar.o -c -DDEFINE2 bar.c
cc -o bar bar.o
cc -o foo.o -c -DDEFINE2 foo.c
cc -o foo foo.o
scons: done building targets.

Because the replacement occurs while the SConscript files are being read, the $CCFLAGS variable has already
been set to -DDEFINE2 by the time the foo.o target is built, even though the call to the Replace method does
not occur until later in the SConscript file.

7.2.9. Setting Values Only If They're Not Already Defined:
the SetDefault Method
Sometimes it's useful to be able to specify that a construction variable should be set to a value only if the construction
environment does not already have that variable defined You can do this with the env.SetDefault method, which
behaves similarly to the setdefault method of Python dictionary objects:

env.SetDefault(SPECIAL_FLAG='-extra-option')

This is especially useful when writing your own Tool modules to apply variables to construction environments.

7.2.10. Appending to the End of Values: the Append
Method
You can append a value to an existing construction variable using the env.Append method:

env = Environment(CPPDEFINES=['MY_VALUE'])
env.Append(CPPDEFINES=['LAST'])
env.Program('foo.c')

Appending Unique Values: the AppendUnique Method

50

Note $CPPDEFINES is the preferred way to set preprocessor defines, as SCons will generate the command line
arguments using the correct prefix/suffix for the platform, leaving the usage portable. If you use $CCFLAGS and
$SHCCFLAGS, you need to include them in their final form, which is less portable.

% scons -Q
cc -o foo.o -c -DMY_VALUE -DLAST foo.c
cc -o foo foo.o

If the construction variable doesn't already exist, the Append method will create it:

env = Environment()
env.Append(NEW_VARIABLE = 'added')
print("NEW_VARIABLE = %s"%env['NEW_VARIABLE'])

Which yields:

% scons -Q
NEW_VARIABLE = added
scons: `.' is up to date.

Note that the Append function tries to be "smart" about how the new value is appended to the old value. If both are
strings, the previous and new strings are simply concatenated. Similarly, if both are lists, the lists are concatenated. If,
however, one is a string and the other is a list, the string is added as a new element to the list.

7.2.11. Appending Unique Values: the AppendUnique
Method
Sometimes it's useful to add a new value only if the existing construction variable doesn't already contain the value.
This can be done using the env.AppendUnique method:

env.AppendUnique(CCFLAGS=['-g'])

In the above example, the -g would be added only if the $CCFLAGS variable does not already contain a -g value.

7.2.12. Prepending to the Beginning of Values: the
Prepend Method
You can prepend a value to the beginning of an existing construction variable using the env.Prepend method:

env = Environment(CPPDEFINES=['MY_VALUE'])
env.Prepend(CPPDEFINES=['FIRST'])
env.Program('foo.c')

SCons then generates the preprocessor define arguments from CPPDEFINES values with the correct prefix/suffix.
For example on Linux or POSIX, the following arguments would be generated: -DFIRST and -DMY_VALUE

% scons -Q

Prepending Unique Values: the PrependUnique
Method

51

cc -o foo.o -c -DFIRST -DMY_VALUE foo.c
cc -o foo foo.o

If the construction variable doesn't already exist, the Prepend method will create it:

env = Environment()
env.Prepend(NEW_VARIABLE='added')
print("NEW_VARIABLE = %s" % env['NEW_VARIABLE'])

Which yields:

% scons -Q
NEW_VARIABLE = added
scons: `.' is up to date.

Like the Append function, the Prepend function tries to be "smart" about how the new value is appended to the old
value. If both are strings, the previous and new strings are simply concatenated. Similarly, if both are lists, the lists are
concatenated. If, however, one is a string and the other is a list, the string is added as a new element to the list.

7.2.13. Prepending Unique Values: the PrependUnique
Method
Some times it's useful to add a new value to the beginning of a construction variable only if the existing value doesn't
already contain the to-be-added value. This can be done using the env.PrependUnique method:

env.PrependUnique(CCFLAGS=['-g'])

In the above example, the -g would be added only if the $CCFLAGS variable does not already contain a -g value.

7.2.14. Overriding Construction Variable Settings
Rather than creating a cloned construction environment for specific tasks, you can override or add construction
variables when calling a builder method by passing them as keyword arguments. The values of these overridden or
added variables will only be in effect when building that target, and will not affect other parts of the build. For example,
if you want to add additional libraries for just one program:

env.Program('hello', 'hello.c', LIBS=['gl', 'glut'])

or generate a shared library with a non-standard suffix:

env.SharedLibrary(
 target='word',
 source='word.cpp',
 SHLIBSUFFIX='.ocx',
 LIBSUFFIXES=['.ocx'],
)

Controlling the Execution Environment for Issued
Commands

52

When overriding this way, the Python keyword arguments in the builder call mean "set to this value". If you want
your override to augment an existing value, you have to take some extra steps. Inside the builder call, it is possible to
substitute in the existing value by using a string containing the variable name prefaced by a dollar sign ($).

env = Environment(CPPDEFINES="FOO")
env.Object(target="foo1.o", source="foo.c")
env.Object(target="foo2.o", source="foo.c", CPPDEFINES="BAR")
env.Object(target="foo3.o", source="foo.c", CPPDEFINES=["BAR", "$CPPDEFINES"])

Which yields:

% scons -Q
cc -o foo1.o -c -DFOO foo.c
cc -o foo2.o -c -DBAR foo.c
cc -o foo3.o -c -DBAR -DFOO foo.c

It is also possible to use the parse_flags keyword argument in an override to merge command-line style arguments
into the appropriate construction variables. This works like the env.MergeFlags method, which will be fully
described in the next chapter.

This example adds 'include' to $CPPPATH, 'EBUG' to $CPPDEFINES, and 'm' to $LIBS:

env = Environment()
env.Program('hello', 'hello.c', parse_flags='-Iinclude -DEBUG -lm')

So when executed:

% scons -Q
cc -o hello.o -c -DEBUG -Iinclude hello.c
cc -o hello hello.o -lm

Using temporary overrides this way is lighter weight than making a full construction environment, so it can help
performance in large projects which have lots of special case values to set. However, keep in mind that this only
works well when the targets are unique. Using builder overrides to try to build the same target with different sets of
flags or other construction variables will lead to the scons: *** Two environments with different
actions... error described in Section 7.2.6, “Multiple Construction Environments” above. In this case you will
actually want to create separate environments.

7.3. Controlling the Execution Environment for
Issued Commands
When SCons builds a target file, it does not execute the commands with the external environment that you used to
execute SCons. Instead, it builds an execution environment from the values stored in the $ENV construction variable
and uses that for executing commands.

The most important ramification of this behavior is that the PATH environment variable, which controls where the
operating system will look for commands and utilities, will almost certainly not be the same as in the external
environment from which you called SCons. This means that SCons might not necessarily find all of the tools that you
can successfully execute from the command line.

Propagating PATH From the External Environment

53

The default value of the PATH environment variable on a POSIX system is /usr/local/bin:/opt/bin:/
bin:/usr/bin:/snap/bin. The default value of the PATH environment variable on a Windows system comes
from the Windows registry value for the command interpreter. If you want to execute any commands--compilers,
linkers, etc.--that are not in these default locations, you need to set the PATH value in the $ENV dictionary in your
construction environment.

The simplest way to do this is to initialize explicitly the value when you create the construction environment; this is
one way to do that:

path = ['/usr/local/bin', '/bin', '/usr/bin']
env = Environment(ENV={'PATH': path})

Assigning a dictionary to the $ENV construction variable in this way completely resets the execution environment, so
that the only variable that will be set when external commands are executed will be the PATH value. If you want to
use the rest of the values in $ENV and only set the value of PATH, you can assign a value only to that variable:

env['ENV']['PATH'] = ['/usr/local/bin', '/bin', '/usr/bin']

Note that SCons does allow you to define the directories in the PATH in a string with paths separated by the pathname-
separator character for your system (':' on POSIX systems, ';' on Windows).

env['ENV']['PATH'] = '/usr/local/bin:/bin:/usr/bin'

But doing so makes your SConscript file less portable, since it will be correct only for the system type that matches
the separator. You can use the Python os.pathsep for for greater portability - don't worry too much if this Python
syntax doesn't make sense since there are other ways available:

import os
env['ENV']['PATH'] = os.pathsep.join(['/usr/local/bin', '/bin', '/usr/bin'])

7.3.1. Propagating PATH From the External Environment
You may want to propagate the external environment PATH to the execution environment for commands. You do this
by initializing the PATH variable with the PATH value from the os.environ dictionary, which is Python's way of
letting you get at the external environment:

import os
env = Environment(ENV={'PATH': os.environ['PATH']})

Alternatively, you may find it easier to just propagate the entire external environment to the execution environment
for commands. This is simpler to code than explicity selecting the PATH value:

import os
env = Environment(ENV=os.environ.copy())

Adding to PATH Values in the Execution Environment

54

Either of these will guarantee that SCons will be able to execute any command that you can execute from the command
line. The drawback is that the build can behave differently if it's run by people with different PATH values in their
environment--for example, if both the /bin and /usr/local/bin directories have different cc commands, then
which one will be used to compile programs will depend on which directory is listed first in the user's PATH variable.

7.3.2. Adding to PATH Values in the Execution
Environment
One of the most common requirements for manipulating a variable in the execution environment is to add one or more
custom directories to a path search variable like PATH on Linux or POSIX systems, or %PATH% on Windows, so that a
locally-installed compiler or other utility can be found when SCons tries to execute it to update a target. SCons provides
env.PrependENVPath and env.AppendENVPath functions to make adding things to execution variables
convenient. You call these functions by specifying the variable to which you want the value added, and then value
itself. So to add some /usr/local directories to the $PATH and $LIB variables, you might:

env = Environment(ENV=os.environ.copy())
env.PrependENVPath('PATH', '/usr/local/bin')
env.AppendENVPath('LIB', '/usr/local/lib')

Note that the added values are strings, and if you want to add multiple directories to a variable like $PATH, you must
include the path separator character in the string (: on Linux or POSIX, ; on Windows, or use os.pathsep for
portability).

7.4. Using the toolpath for external Tools

7.4.1. The default tool search path
Normally when using a tool from the construction environment, several different search locations are checked
by default. This includes the SCons/Tools/ directory that is part of the scons distribution and the directory
site_scons/site_tools relative to the root SConstruct file.

Builtin tool or tool located within site_tools
env = Environment(tools=['SomeTool'])
env.SomeTool(targets, sources)

The search locations would include by default
SCons/Tool/SomeTool.py
SCons/Tool/SomeTool/__init__.py
./site_scons/site_tools/SomeTool.py
./site_scons/site_tools/SomeTool/__init__.py

7.4.2. Providing an external directory to toolpath
In some cases you may want to specify a different location to search for tools. The Environment function contains
an option for this called toolpath This can be used to add additional search directories.

Tool located within the toolpath directory option

Nested Tools within a toolpath

55

env = Environment(
 tools=['SomeTool'],
 toolpath=['/opt/SomeToolPath', '/opt/SomeToolPath2']
)
env.SomeTool(targets, sources)

The search locations in this example would include:
/opt/SomeToolPath/SomeTool.py
/opt/SomeToolPath/SomeTool/__init__.py
/opt/SomeToolPath2/SomeTool.py
/opt/SomeToolPath2/SomeTool/__init__.py
SCons/Tool/SomeTool.py
SCons/Tool/SomeTool/__init__.py
./site_scons/site_tools/SomeTool.py
./site_scons/site_tools/SomeTool/__init__.py

7.4.3. Nested Tools within a toolpath
Since SCons 3.0, a Builder may be located within a sub-directory / sub-package of the toolpath. This is similar to
namespacing within Python. With nested or namespaced tools we can use the dot notation to specify a sub-directory
that the tool is located under.

namespaced target
env = Environment(
 tools=['SubDir1.SubDir2.SomeTool'],
 toolpath=['/opt/SomeToolPath']
)
env.SomeTool(targets, sources)

With this example the search locations would include
/opt/SomeToolPath/SubDir1/SubDir2/SomeTool.py
/opt/SomeToolPath/SubDir1/SubDir2/SomeTool/__init__.py
SCons/Tool/SubDir1/SubDir2/SomeTool.py
SCons/Tool/SubDir1/SubDir2/SomeTool/__init__.py
./site_scons/site_tools/SubDir1/SubDir2/SomeTool.py
./site_scons/site_tools/SubDir1/SubDir2/SomeTool/__init__.py

7.4.4. Using sys.path within the toolpath
If we want to access tools external to scons which are findable via sys.path (for example, tools installed via Python's
pip package manager), it is possible to use sys.path with the toolpath. One thing to watch out for with this approach
is that sys.path can sometimes contains paths to .egg files instead of directories. So we need to filter those out
with this approach.

namespaced target using sys.path within toolpath

searchpaths = []
for item in sys.path:
 if os.path.isdir(item):
 searchpaths.append(item)

Using the PyPackageDir function to add to the
toolpath

56

env = Environment(
 tools=['someinstalledpackage.SomeTool'],
 toolpath=searchpaths
)
env.SomeTool(targets, sources)

By using sys.path with the toolpath argument and by using the nested syntax we can have scons search packages
installed via pip for Tools.

For Windows based on the python version and install directory, this may be something like
C:\Python35\Lib\site-packages\someinstalledpackage\SomeTool.py
C:\Python35\Lib\site-packages\someinstalledpackage\SomeTool__init__.py

For Linux this could be something like:
/usr/lib/python3/dist-packages/someinstalledpackage/SomeTool.py
/usr/lib/python3/dist-packages/someinstalledpackage/SomeTool/__init__.py

7.4.5. Using the PyPackageDir function to add to the
toolpath
In some cases you may want to use a tool located within a installed external pip package. This is possible by the use
of sys.path with the toolpath. However in that situation you need to provide a prefix to the toolname to indicate
where it is located within sys.path.

searchpaths = []
for item in sys.path:
 if os.path.isdir(item):
 searchpaths.append(item)
env = Environment(
 tools=['tools_example.subdir1.subdir2.SomeTool'],
 toolpath=searchpaths
)
env.SomeTool(targets, sources)

To avoid the use of a prefix within the name of the tool or filtering sys.path for directories, we can use
PyPackageDir function to locate the directory of the python package. PyPackageDir returns a Dir object which
represents the path of the directory for the python package / module specified as a parameter.

namespaced target using sys.path
env = Environment(
 tools=['SomeTool'],
 toolpath=[PyPackageDir('tools_example.subdir1.subdir2')]
)
env.SomeTool(targets, sources)

8 Automatically Putting
Command-line Options into
their Construction Variables

This chapter describes the MergeFlags, ParseFlags, and ParseConfig methods of a construction
environment, as well as the parse_flags keyword argument to methods that construct environments.

8.1. Merging Options into the Environment: the
MergeFlags Function
SCons construction environments have a MergeFlags method that merges values from a passed-in argument into
the construction environment. If the argument is a dictionary, MergeFlags treats each value in the dictionary as a
list of options you would pass to a command (such as a compiler or linker). MergeFlags will not duplicate an option
if it already exists in the construction variable. If the argument is a string, MergeFlags calls the ParseFlags
method to burst it out into a dictionary first, then acts on the result.

MergeFlags tries to be intelligent about merging options, knowing that different construction variables may have
different needs. When merging options to any variable whose name ends in PATH, MergeFlags keeps the leftmost
occurrence of the option, because in typical lists of directory paths, the first occurrence "wins." When merging options
to any other variable name, MergeFlags keeps the rightmost occurrence of the option, because in a list of typical
command-line options, the last occurrence "wins."

env = Environment()
env.Append(CCFLAGS='-option -O3 -O1')
flags = {'CCFLAGS': '-whatever -O3'}
env.MergeFlags(flags)
print("CCFLAGS:", env['CCFLAGS'])

% scons -Q
CCFLAGS: ['-option', '-O1', '-whatever', '-O3']
scons: `.' is up to date.

Note that the default value for $CCFLAGS is an internal SCons object which automatically converts the options you
specify as a string into a list.

Merging Options While Creating Environment: the
parse_flags Parameter

58

env = Environment()
env.Append(CPPPATH=['/include', '/usr/local/include', '/usr/include'])
flags = {'CPPPATH': ['/usr/opt/include', '/usr/local/include']}
env.MergeFlags(flags)
print("CPPPATH:", env['CPPPATH'])

% scons -Q
CPPPATH: ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include']
scons: `.' is up to date.

Note that the default value for $CPPPATH is a normal Python list, so you should give its values as a list in the dictionary
you pass to the MergeFlags function.

If MergeFlags is passed anything other than a dictionary, it calls the ParseFlags method to convert it into a
dictionary.

env = Environment()
env.Append(CCFLAGS='-option -O3 -O1')
env.Append(CPPPATH=['/include', '/usr/local/include', '/usr/include'])
env.MergeFlags('-whatever -I/usr/opt/include -O3 -I/usr/local/include')
print("CCFLAGS:", env['CCFLAGS'])
print("CPPPATH:", env['CPPPATH'])

% scons -Q
CCFLAGS: ['-option', '-O1', '-whatever', '-O3']
CPPPATH: ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include']
scons: `.' is up to date.

In the combined example above, ParseFlags has sorted the options into their corresponding variables and returned
a dictionary for MergeFlags to apply to the construction variables in the specified construction environment.

8.2. Merging Options While Creating
Environment: the parse_flags Parameter
It is also possible to merge construction variable values from arguments given to the Environment call itself. If the
parse_flags keyword argument is given, its value is distributed to construction variables in the new environment
in the same way as described for the MergeFlags method. This also works when calling env.Clone, as well as
in overrides to builder methods (see Section 7.2.14, “Overriding Construction Variable Settings”).

env = Environment(parse_flags="-I/opt/include -L/opt/lib -lfoo")
for k in ('CPPPATH', 'LIBPATH', 'LIBS'):
 print("%s:" % k, env.get(k))
env.Program("f1.c")

% scons -Q
CPPPATH: ['/opt/include']
LIBPATH: ['/opt/lib']
LIBS: ['foo']

Separating Compile Arguments into their Variables: the
ParseFlags Function

59

cc -o f1.o -c -I/opt/include f1.c
cc -o f1 f1.o -L/opt/lib -lfoo

8.3. Separating Compile Arguments into their
Variables: the ParseFlags Function
SCons has a bewildering array of construction variables for different types of options when building programs.
Sometimes you may not know exactly which variable should be used for a particular option.

SCons construction environments have a ParseFlags method that takes a set of typical command-line options and
distributes them into the appropriate construction variables Historically, it was created to support the ParseConfig
method, so it focuses on options used by the GNU Compiler Collection (GCC) for the C and C++ toolchains.

ParseFlags returns a dictionary containing the options distributed into their respective construction variables.
Normally, this dictionary would then be passed to MergeFlags to merge the options into a construction environment,
but the dictionary can be edited if desired to provide additional functionality. (Note that if the flags are not going to
be edited, calling MergeFlags with the options directly will avoid an additional step.)

env = Environment()
d = env.ParseFlags("-I/opt/include -L/opt/lib -lfoo")
for k, v in sorted(d.items()):
 if v:
 print(k, v)
env.MergeFlags(d)
env.Program("f1.c")

% scons -Q
CPPPATH ['/opt/include']
LIBPATH ['/opt/lib']
LIBS ['foo']
cc -o f1.o -c -I/opt/include f1.c
cc -o f1 f1.o -L/opt/lib -lfoo

Note that if the options are limited to generic types like those above, they will be correctly translated for other platform
types:

C:\>scons -Q
CPPPATH ['/opt/include']
LIBPATH ['/opt/lib']
LIBS ['foo']
cl /Fof1.obj /c f1.c /nologo /I\opt\include
link /nologo /OUT:f1.exe /LIBPATH:\opt\lib foo.lib f1.obj
embedManifestExeCheck(target, source, env)

Since the assumption is that the flags are used for the GCC toolchain, unrecognized flags are placed in $CCFLAGS
so they will be used for both C and C++ compiles:

env = Environment()
d = env.ParseFlags("-whatever")
for k, v in sorted(d.items()):
 if v:
 print(k, v)

Finding Installed Library Information: the
ParseConfig Function

60

env.MergeFlags(d)
env.Program("f1.c")

% scons -Q
CCFLAGS -whatever
cc -o f1.o -c -whatever f1.c
cc -o f1 f1.o

ParseFlags will also accept a (recursive) list of strings as input; the list is flattened before the strings are processed:

env = Environment()
d = env.ParseFlags(["-I/opt/include", ["-L/opt/lib", "-lfoo"]])
for k, v in sorted(d.items()):
 if v:
 print(k, v)
env.MergeFlags(d)
env.Program("f1.c")

% scons -Q
CPPPATH ['/opt/include']
LIBPATH ['/opt/lib']
LIBS ['foo']
cc -o f1.o -c -I/opt/include f1.c
cc -o f1 f1.o -L/opt/lib -lfoo

If a string begins with a an exclamation mark (!), the string is passed to the shell for execution. The output of the
command is then parsed:

env = Environment()
d = env.ParseFlags(["!echo -I/opt/include", "!echo -L/opt/lib", "-lfoo"])
for k, v in sorted(d.items()):
 if v:
 print(k, v)
env.MergeFlags(d)
env.Program("f1.c")

% scons -Q
CPPPATH ['/opt/include']
LIBPATH ['/opt/lib']
LIBS ['foo']
cc -o f1.o -c -I/opt/include f1.c
cc -o f1 f1.o -L/opt/lib -lfoo

ParseFlags is regularly updated for new options; consult the man page for details about those currently recognized.

8.4. Finding Installed Library Information: the
ParseConfig Function
Configuring the right options to build programs to work with libraries--especially shared libraries--that are available
on POSIX systems can be complex. To help this situation, various utilies with names that end in config return

Finding Installed Library Information: the
ParseConfig Function

61

the command-line options for the GNU Compiler Collection (GCC) that are needed to build and link against those
libraries; for example, the command-line options to use a library named lib could be found by calling a utility named
lib-config.

A more recent convention is that these options are available through the generic pkg-config program, providing a
common framework, error handling, and the like, so that all the package creator has to do is provide the set of strings
for his particular package.

SCons construction variables have a ParseConfig method that asks the host system to execute a command and then
configures the appropriate construction variables based on the output of that command. This lets you run a program
like pkg-config or a more specific utility to help set up your build.

env = Environment()
env['CPPPATH'] = ['/lib/compat']
env.ParseConfig("pkg-config x11 --cflags --libs")
print("CPPPATH:", env['CPPPATH'])

SCons will execute the specified command string, parse the resultant flags, and add the flags to the appropriate
environment variables.

% scons -Q
CPPPATH: ['/lib/compat', '/usr/X11/include']
scons: `.' is up to date.

In the example above, SCons has added the include directory to $CPPPATH (Depending upon what other flags are
emitted by the pkg-config command, other variables may have been extended as well.)

Note that the options are merged with existing options using the MergeFlags method, so that each option only
occurs once in the construction variable.

env = Environment()
env.ParseConfig("pkg-config x11 --cflags --libs")
env.ParseConfig("pkg-config x11 --cflags --libs")
print("CPPPATH:", "CPPPATH:", env['CPPPATH'])

% scons -Q
CPPPATH: ['/usr/X11/include']
scons: `.' is up to date.

9 Controlling Build Output

A key aspect of creating a usable build configuration is providing useful output from the build so its users can readily
understand what the build is doing and get information about how to control the build. SCons provides several ways
of controlling output from the build configuration to help make the build more useful and understandable.

9.1. Providing Build Help: the Help Function
It's often very useful to be able to give users some help that describes the specific targets, build options, etc., that can
be used for your build. SCons provides the Help function to allow you to specify this help text:

Help("""
Type: 'scons program' to build the production program,
 'scons debug' to build the debug version.
""")

Optionally, you can specify the append flag:

Help("""
Type: 'scons program' to build the production program,
 'scons debug' to build the debug version.
""", append=True)

(Note the above use of the Python triple-quote syntax, which comes in very handy for specifying multi-line strings
like help text.)

When the SConstruct or SConscript files contain a call to the Help function, the specified help text will be
displayed in response to the SCons -h option:

% scons -h
scons: Reading SConscript files ...
scons: done reading SConscript files.

Type: 'scons program' to build the production program,
 'scons debug' to build the debug version.

Use scons -H for help about SCons built-in command-line options.

Controlling How SCons Prints Build Commands: the
$*COMSTR Variables

63

The SConscript files may contain multiple calls to the Help function, in which case the specified text(s) will be
concatenated when displayed. This allows you to define fragments of help text together with the corresponding feature,
even if spread across multiple SConscript files. In this situation, the order in which the SConscript files are
called will determine the order in which the Help functions are called, which will determine the order in which the
various bits of text will get concatenated.

Calling Help("text") overwrites the help text that otherwise would be collected from any command-line options
defined in AddOption calls. To preserve the AddOption help text, add the append=True keyword argument
when calling Help. This also preserves the option help for the scons command itself. To preserve only the
AddOption help, also add the local_only=True keyword argument. (This only matters the first time you call
Append, on any subsequent calls the text you passed is added to the existing help text).

Another use would be to make the help text conditional on some variable. For example, suppose you only want to
display a line about building a Windows-only version of a program when actually run on Windows. The following
SConstruct file:

env = Environment()

Help("\nType: 'scons program' to build the production program.\n")

if env['PLATFORM'] == 'win32':
 Help("\nType: 'scons windebug' to build the Windows debug version.\n")

Will display the complete help text on Windows:

C:\>scons -h
scons: Reading SConscript files ...
scons: done reading SConscript files.

Type: 'scons program' to build the production program.

Type: 'scons windebug' to build the Windows debug version.

Use scons -H for help about SCons built-in command-line options.

But only show the relevant option on a Linux or UNIX system:

% scons -h
scons: Reading SConscript files ...
scons: done reading SConscript files.

Type: 'scons program' to build the production program.

Use scons -H for help about SCons built-in command-line options.

If there is no Help text in the SConstruct or SConscript files, SCons will revert to displaying its standard list
that describes the SCons command-line options. This list is also always displayed whenever the -H option is used.

9.2. Controlling How SCons Prints Build
Commands: the $*COMSTR Variables
Sometimes the commands executed to compile object files or link programs (or build other targets) can get very
long, long enough to make it difficult for users to distinguish error messages or other important build output from the

Controlling How SCons Prints Build Commands: the
$*COMSTR Variables

64

commands themselves. All of the default $*COM variables that specify the command lines used to build various types
of target files have a corresponding $*COMSTR variable that can be set to an alternative string that will be displayed
when the target is built.

For example, suppose you want to have SCons display a "Compiling" message whenever it's compiling an object
file, and a "Linking" when it's linking an executable. You could write a SConstruct file that looks like:

env = Environment(CCCOMSTR = "Compiling $TARGET",
 LINKCOMSTR = "Linking $TARGET")
env.Program('foo.c')

Which would then yield the output:

% scons -Q
Compiling foo.o
Linking foo

SCons performs complete variable substitution on $*COMSTR variables, so they have access to all of the standard
variables like $TARGET $SOURCES, etc., as well as any construction variables that happen to be configured in the
construction environment used to build a specific target.

Of course, sometimes it's still important to be able to see the exact command that SCons will execute to build a target.
For example, you may simply need to verify that SCons is configured to supply the right options to the compiler, or a
developer may want to cut-and-paste a compile command to add a few options for a custom test.

One common way to give users control over whether or not SCons should print the actual command line or a short,
configured summary is to add support for a VERBOSE command-line variable to your SConstruct file. A simple
configuration for this might look like:

env = Environment()
if ARGUMENTS.get('VERBOSE') != '1':
 env['CCCOMSTR'] = "Compiling $TARGET"
 env['LINKCOMSTR'] = "Linking $TARGET"
env.Program('foo.c')

By only setting the appropriate $*COMSTR variables if the user specifies VERBOSE=1 on the command line, the user
has control over how SCons displays these particular command lines:

% scons -Q
Compiling foo.o
Linking foo
% scons -Q -c
Removed foo.o
Removed foo
% scons -Q VERBOSE=1
cc -o foo.o -c foo.c
cc -o foo foo.o

Providing Build Progress Output: the Progress
Function

65

A gentle reminder here: many of the commands for building come in pairs, depending on whether the intent is to build
an object for use in a shared library or not. The command strings mirror this, so it may be necessary to set, for example,
both CCCOMSTR and SHCCCOMSTR to get the desired results.

9.3. Providing Build Progress Output: the
Progress Function
Another aspect of providing good build output is to give the user feedback about what SCons is doing even when
nothing is being built at the moment. This can be especially true for large builds when most of the targets are already
up-to-date. Because SCons can take a long time making absolutely sure that every target is, in fact, up-to-date with
respect to a lot of dependency files, it can be easy for users to mistakenly conclude that SCons is hung or that there
is some other problem with the build.

One way to deal with this perception is to configure SCons to print something to let the user know what it's "thinking
about." The Progress function allows you to specify a string that will be printed for every file that SCons is
"considering" while it is traversing the dependency graph to decide what targets are or are not up-to-date.

Progress('Evaluating $TARGET\n')
Program('f1.c')
Program('f2.c')

Note that the Progress function does not arrange for a newline to be printed automatically at the end of the string
(as does the Python print function), and we must specify the \n that we want printed at the end of the configured
string. This configuration, then, will have SCons print that it is Evaluating each file that it encounters in turn as
it traverses the dependency graph:

% scons -Q
Evaluating SConstruct
Evaluating f1.c
Evaluating f1.o
cc -o f1.o -c f1.c
Evaluating f1
cc -o f1 f1.o
Evaluating f2.c
Evaluating f2.o
cc -o f2.o -c f2.c
Evaluating f2
cc -o f2 f2.o
Evaluating .

Of course, normally you don't want to add all of these additional lines to your build output, as that can make it difficult
for the user to find errors or other important messages. A more useful way to display this progress might be to have the
file names printed directly to the user's screen, not to the same standard output stream where build output is printed,
and to use a carriage return character (\r) so that each file name gets re-printed on the same line. Such a configuration
would look like:

Progress('$TARGET\r',

Providing Build Progress Output: the Progress
Function

66

 file=open('/dev/tty', 'w'),
 overwrite=True)
Program('f1.c')
Program('f2.c')

Note that we also specified the overwrite=True argument to the Progress function, which causes SCons
to "wipe out" the previous string with space characters before printing the next Progress string. Without the
overwrite=True argument, a shorter file name would not overwrite all of the charactes in a longer file name that
precedes it, making it difficult to tell what the actual file name is on the output. Also note that we opened up the /
dev/tty file for direct access (on POSIX) to the user's screen. On Windows, the equivalent would be to open the
con: file name.

Also, it's important to know that although you can use $TARGET to substitute the name of the node in the string, the
Progress function does not perform general variable substitution (because there's not necessarily a construction
environment involved in evaluating a node like a source file, for example).

You can also specify a list of strings to the Progress function, in which case SCons will display each string in turn.
This can be used to implement a "spinner" by having SCons cycle through a sequence of strings:

Progress(['-\r', '\\\r', '|\r', '/\r'], interval=5)
Program('f1.c')
Program('f2.c')

Note that here we have also used the interval= keyword argument to have SCons only print a new "spinner" string
once every five evaluated nodes. Using an interval= count, even with strings that use $TARGET like our examples
above, can be a good way to lessen the work that SCons expends printing Progress strings, while still giving the
user feedback that indicates SCons is still working on evaluating the build.

Lastly, you can have direct control over how to print each evaluated node by passing a Python function (or other
Python callable) to the Progress function. Your function will be called for each evaluated node, allowing you to
implement more sophisticated logic like adding a counter:

screen = open('/dev/tty', 'w')
count = 0
def progress_function(node)
 count += 1
 screen.write('Node %4d: %s\r' % (count, node))

Progress(progress_function)

Of course, if you choose, you could completely ignore the node argument to the function, and just print a count, or
anything else you wish.

(Note that there's an obvious follow-on question here: how would you find the total number of nodes that will be
evaluated so you can tell the user how close the build is to finishing? Unfortunately, in the general case, there isn't a
good way to do that, short of having SCons evaluate its dependency graph twice, first to count the total and the second
time to actually build the targets. This would be necessary because you can't know in advance which target(s) the user
actually requested to be built. The entire build may consist of thousands of Nodes, for example, but maybe the user
specifically requested that only a single object file be built.)

Printing Detailed Build Status: the
GetBuildFailures Function

67

9.4. Printing Detailed Build Status: the
GetBuildFailures Function
SCons, like most build tools, returns zero status to the shell on success and nonzero status on failure. Sometimes it's
useful to give more information about the build status at the end of the run, for instance to print an informative message,
send an email, or page the poor slob who broke the build.

SCons provides a GetBuildFailures method that you can use in a python atexit function to get a list of objects
describing the actions that failed while attempting to build targets. There can be more than one if you're using -j.
Here's a simple example:

import atexit

def print_build_failures():
 from SCons.Script import GetBuildFailures
 for bf in GetBuildFailures():
 print("%s failed: %s" % (bf.node, bf.errstr))
atexit.register(print_build_failures)

The atexit.register call registers print_build_failures as an atexit callback, to be called before
SCons exits. When that function is called, it calls GetBuildFailures to fetch the list of failed objects. See the
man page for the detailed contents of the returned objects; some of the more useful attributes are .node, .errstr,
.filename, and .command. The filename is not necessarily the same file as the node; the node is the target
that was being built when the error occurred, while the filenameis the file or dir that actually caused the error. Note:
only call GetBuildFailures at the end of the build; calling it at any other time is undefined.

Here is a more complete example showing how to turn each element of GetBuildFailures into a string:

Make the build fail if we pass fail=1 on the command line
if ARGUMENTS.get('fail', 0):
 Command('target', 'source', ['/bin/false'])

def bf_to_str(bf):
 """Convert an element of GetBuildFailures() to a string
 in a useful way."""
 import SCons.Errors
 if bf is None: # unknown targets product None in list
 return '(unknown tgt)'
 elif isinstance(bf, SCons.Errors.StopError):
 return str(bf)
 elif bf.node:
 return str(bf.node) + ': ' + bf.errstr
 elif bf.filename:
 return bf.filename + ': ' + bf.errstr
 return 'unknown failure: ' + bf.errstr
import atexit

def build_status():
 """Convert the build status to a 2-tuple, (status, msg)."""
 from SCons.Script import GetBuildFailures

Printing Detailed Build Status: the
GetBuildFailures Function

68

 bf = GetBuildFailures()
 if bf:
 # bf is normally a list of build failures; if an element is None,
 # it's because of a target that scons doesn't know anything about.
 status = 'failed'
 failures_message = "\n".join(["Failed building %s" % bf_to_str(x)
 for x in bf if x is not None])
 else:
 # if bf is None, the build completed successfully.
 status = 'ok'
 failures_message = ''
 return (status, failures_message)

def display_build_status():
 """Display the build status. Called by atexit.
 Here you could do all kinds of complicated things."""
 status, failures_message = build_status()
 if status == 'failed':
 print("FAILED!!!!") # could display alert, ring bell, etc.
 elif status == 'ok':
 print("Build succeeded.")
 print(failures_message)

atexit.register(display_build_status)

When this runs, you'll see the appropriate output:

% scons -Q
scons: `.' is up to date.
Build succeeded.
% scons -Q fail=1
scons: *** [target] Source `source' not found, needed by target `target'.
FAILED!!!!
Failed building target: Source `source' not found, needed by target `target'.

10 Controlling a Build From
the Command Line

Software builds are rarely completely static, so SCons gives you a number of ways to help control build execution
via instructions on the command line. The arguments that can be specified on the command line are broken down
into three types:

Options
Command-line arguments that begin with a - (hyphen) characters are called options. SCons provides ways for
you to examine and act on options and their values, as well as the ability to define custom options for your project.
See Section 10.1, “Command-Line Options”, below.

Variables
Command-line arguments containing an = (equal sign) character are called build variables (or just variables).
SCons provides direct access to all of the build variable settings from the command line, as well as a higher-
level interface that lets you define known build variables, including defining types, default values, help text, and
automatic validation, as well as applying those to a construction environment. See Section 10.2, “Command-Line
variable=value Build Variables”, below.

Targets
Command-line arguments that are neither options nor build variables (that is, do not begin with a hyphen and do
not contain an equal sign) are considered targets that you are telling SCons to build. SCons provides access to
the list of specified targets, as well as ways to set the default list of targets from within the SConscript files.
See Section 10.3, “Command-Line Targets”, below.

10.1. Command-Line Options
SCons has many command-line options that control its behavior. A command-line option always begins with one
or two hyphen (-) characters. The SCons manual page contains the description of the current options (see https://
scons.org/doc/production/HTML/scons-man.html).

10.1.1. How To Avoid Typing Command-Line Options
Each Time: the SCONSFLAGS Environment Variable
You may find yourself using certain command-line options every time you run SCons. For example, you might find
it saves time to specify -j 2 to have SCons run up to two build commands in parallel. To avoid having to type -
j 2 by hand every time, you can set the external environment variable SCONSFLAGS to a string containing -j 2,

https://scons.org/doc/production/HTML/scons-man.html
https://scons.org/doc/production/HTML/scons-man.html

Getting Values Set by Command-Line Options: the
GetOption Function

70

as well as any other command-line options that you want SCons to always use. SCONSFLAGS is an exception to the
usual rule that SCons itself avoids looking at environment variables from the shell you are running.

If, for example, you are using a POSIX shell such as bash or zsh and you always want SCons to use the -Q option,
you can set the SCONSFLAGS environment as follows:

% scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
 ... [build output] ...
scons: done building targets.
% export SCONSFLAGS="-Q"
% scons
 ... [build output] ...

For csh-style shells on POSIX systems you can set the SCONSFLAGS environment variable as follows:

$ setenv SCONSFLAGS "-Q"

For the Windows command shell (cmd) you can set the SCONSFLAGS environment variable as follows:

C:\Users\foo> set SCONSFLAGS="-Q"

To set SCONSFLAGS more permanently you can add the setting to the shell's startup file on POSIX systems, and
on Windows you can use the System Properties control panel applet to select Environment Variables
and set it there.

10.1.2. Getting Values Set by Command-Line Options:
the GetOption Function
The GetOption function lets you query the values set by the various command-line options.

One use case for GetOption is to check the operation mode in order to bypass some steps, for example, checking
whether the -h (or --help) option was given. Normally, SCons does not print its help text until after it has read
all of the SConscript files, since any SConscript can make additions to the help text. Of course, reading all of the
SConscript files takes extra time. If you know that your configuration does not define any additional help text in
subsidiary SConscript files, you can speed up displaying the command-line help by using a GetOption query as a
guard for whether to load the subsidiary SConscript files:

if not GetOption('help'):
 SConscript('src/SConscript', export='env')

The same technique can be used to special-case the clean (GetOption('clean')) and no-execute
(GetOption('no_exec')) modes.

In general, the string that you pass to the GetOption function to fetch the value of a command-line option setting is
the same as the "most common" long option name (beginning with two hyphen characters), although there are some

Setting Values of Command-Line Options: the
SetOption Function

71

exceptions. The list of SCons command-line options and the GetOption strings for fetching them, are available in
the Section 10.1.4, “Strings for Getting or Setting Values of SCons Command-Line Options” section, below.

GetOption can be used to retrieve the values of options defined by calls to AddOption. A GetOption call must
appear after the AddOption call for that option (unlike the defining of build targets, this is a case where "order
matters" in SCons). If the AddOption call supplied a dest keyword argument, a string with that name is what to
pass as the argument to GetOption, otherwise it is a (possibly modified) version of the first long option name -
see AddOption.

10.1.3. Setting Values of Command-Line Options: the
SetOption Function
You can also set the values of certain (but not all) SCons command-line options from within the SConscript files by
using the SetOption function. The strings that you use to set the values of SCons command-line options are available
in the Section 10.1.4, “Strings for Getting or Setting Values of SCons Command-Line Options” section, below.

One use of the SetOption function is to specify a value for the -j or --jobs option, so that you get the improved
performance of a parallel build without having to specify the option by hand. A complicating factor is that a good
value for the -j option is somewhat system-dependent. One rough guideline is that the more processors your system
has, the higher you want to set the -j value, in order to take advantage of the number of CPUs.

For example, suppose the administrators of your development systems have standardized on setting a NUM_CPU
environment variable to the number of processors on each system. A little bit of Python code to access the environment
variable and the SetOption function provides the right level of flexibility:

import os

num_cpu = int(os.environ.get('NUM_CPU', 2))
SetOption('num_jobs', num_cpu)
print("running with -j %s" % GetOption('num_jobs'))

The above snippet of code sets the value of the --jobs option to the value specified in the NUM_CPU environment
variable. (This is one of the exception cases where the string is spelled differently from the command-line option. The
string for fetching or setting the --jobs value is num_jobs for historical reasons.) The code in this example prints
the num_jobs value for illustrative purposes. It uses a default value of 2 to provide some minimal parallelism even
on single-processor systems:

% scons -Q
running with -j 2
scons: `.' is up to date.

But if the NUM_CPU environment variable is set, then use that for the default number of jobs:

% export NUM_CPU="4"
% scons -Q
running with -j 4
scons: `.' is up to date.

But any explicit -j or --jobs value you specify on the command line is used first, whether the NUM_CPU
environment variable is set or not:

% scons -Q -j 7

Strings for Getting or Setting Values of SCons Command-
Line Options

72

running with -j 7
scons: `.' is up to date.
% export NUM_CPU="4"
% scons -Q -j 3
running with -j 3
scons: `.' is up to date.

10.1.4. Strings for Getting or Setting Values of SCons
Command-Line Options
The strings that you can pass to the GetOption and SetOption functions usually correspond to the first long-
form option name (that is, name beginning with two hyphen characters: --), after replacing any remaining hyphen
characters with underscores.

SetOption works for options added with AddOption, but only if they were created with settable=True in
the call to AddOption (only available in SCons 4.8.0 and later).

The full list of strings and the variables they correspond to is as follows:

String for GetOption and SetOption Command-Line Option(s)

cache_debug --cache-debug

cache_disable --cache-disable

cache_force --cache-force

cache_show --cache-show

clean -c, --clean, --remove

config --config

directory -C, --directory

diskcheck --diskcheck

duplicate --duplicate

file -f, --file, --makefile , --sconstruct

help -h, --help

ignore_errors --ignore-errors

implicit_cache --implicit-cache

implicit_deps_changed --implicit-deps-changed

implicit_deps_unchanged --implicit-deps-unchanged

interactive --interact, --interactive

keep_going -k, --keep-going

max_drift --max-drift

no_exec -n, --no-exec, --just-print, --dry-run, --
recon

no_site_dir --no-site-dir

num_jobs -j, --jobs

profile_file --profile

question -q, --question

Adding Custom Command-Line Options: the
AddOption Function

73

String for GetOption and SetOption Command-Line Option(s)

random --random

repository -Y, --repository, --srcdir

silent -s, --silent, --quiet

site_dir --site-dir

stack_size --stack-size

taskmastertrace_file --taskmastertrace

warn --warn --warning

10.1.5. Adding Custom Command-Line Options: the
AddOption Function
You can also define your own command-line options for the project with the AddOption function. The AddOption
function takes the same arguments as the add_option method from the Python standard library module optparse
1 (see https://docs.python.org/3/library/optparse.html).

Once you add a custom command-line option with the AddOption function, the value of the option (if any) is
immediately available using the GetOption function. The argument to GetOption must be the name of the variable
which holds the option. If the dest keyword argument to AddOption is specified, the value is the variable name.
given. If not given, it is the name (without the leading hyphens) of the first long option name given to AddOption after
replacing any remaining hyphen characters with underscores, since hyphens are not legal in Python identifier names.

SetOption works for options added with AddOption, but only if they were created with settable=True in
the call to AddOption (only available in SCons 4.8.0 and later).

One useful example of using this functionality is to provide a --prefix to help describe where to install files:

AddOption(
 '--prefix',
 dest='prefix',
 type='string',
 nargs=1,
 action='store',
 metavar='DIR',
 help='installation prefix',
)

env = Environment(PREFIX=GetOption('prefix'))

installed_foo = env.Install('$PREFIX/usr/bin', 'foo.in')
Default(installed_foo)

The above code uses the GetOption function to set the $PREFIX construction variable to a value you specify with a
command-line option of --prefix. Because $PREFIX expands to a null string if it's not initialized, running SCons
without the option of --prefix installs the file in the /usr/bin/ directory:

% scons -Q -n

1 The AddOption function is, in fact, implemented using a subclass of optparse.OptionParser.

https://docs.python.org/3/library/optparse.html

Command-Line variable=value Build Variables

74

Install file: "foo.in" as "/usr/bin/foo.in"

But specifying --prefix=/tmp/install on the command line causes the file to be installed in the /tmp/
install/usr/bin/ directory:

% scons -Q -n --prefix=/tmp/install
Install file: "foo.in" as "/tmp/install/usr/bin/foo.in"

Note

The optparse parser which SCons uses allows option-arguments to follow their options after either an =
or space separator, however the latter form does not work well in SCons for added options and should be
avoided. SCons does not place an ordering constraint on the types of command-line arguments, so while --
input=ARG is unambiguous, for --input ARG it is not possible to tell without instructions whether ARG
is an argument belonging to the input option or a standalone word. SCons considers words on the command
line which do not begin with hyphen as either command-line build variables or command-line targets, both
of which are made available for use in an SConscript (see the immediately following sections for details).
Thus, they must be collected before SConscript processing takes place. AddOption calls do provide the
necessary instructions to resolve the ambiguity, but as they appear in SConscript files, SCons does not
have the information early enough, and unexpected things may happen, such as option-arguments appearing
in the list of targets, and processing exceptions due to missing option-arguments.

As a result, this usage style should be avoided when invoking scons. For single-argument options, tell your
users to use the --input=ARG form on the command line. For multiple-argument options (nargs value
greater than one), set nargs to one in the AddOption call and either: combine the option-arguments into
one word with a separator, and parse the result in your own code (see the built-in --debug option, which
allows specifying multiple arguments as a single comma-separated word, for an example of such usage);
or allow the option to be specified multiple times by setting action='append'. Both methods can be
supported at the same time.

10.2. Command-Line variable=value Build
Variables
You may want to control various aspects of your build by allowing variable=value values to be specified on the
command line. For example, suppose you want to be able to build a debug version of a program by running SCons
as follows:

% scons -Q debug=1

SCons provides an ARGUMENTS dictionary that stores all of the variable=value assignments from the command
line. This allows you to modify aspects of your build in response to specifications on the command line.

The following code sets the $CCFLAGS construction variable in response to the debug flag being set in the
ARGUMENTS dictionary:

env = Environment()
debug = ARGUMENTS.get('debug', 0)
if int(debug):
 env.Append(CCFLAGS='-g')
env.Program('prog.c')

Command-Line variable=value Build Variables

75

This results in the -g compiler option being used when debug=1 is used on the command line:

% scons -Q debug=0
cc -o prog.o -c prog.c
cc -o prog prog.o
% scons -Q debug=0
scons: `.' is up to date.
% scons -Q debug=1
cc -o prog.o -c -g prog.c
cc -o prog prog.o
% scons -Q debug=1
scons: `.' is up to date.

Note

Two usage notes (both shown in the example above):

• No matter how you intend to use them, the values read from a command line (i.e., external to the program)
are always strings. You may need to do type conversion.

• When you retrieve from the ARGUMENTS dictionary, it is useful to use the Python dictionary get method,
so you can supply a default value if the variable is not given on the command line. Otherwise, the build
will fail with a KeyError if the variable is not set.

SCons keeps track of the precise build command used to build each object file, and as a result can determine that the
object and executable files need rebuilding when the value of the debug argument has changed.

The ARGUMENTS dictionary has two minor drawbacks. First, because it is a dictionary, it can only map each keyword
to one value, and thus only "remembers" the last setting for each keyword on the command line. This makes the
ARGUMENTS dictionary less than ideal if you want to allow specifying multiple values on the command line for a
given keyword. Second, it does not preserve the order in which the variable settings were specified, which is a problem
if you want the configuration to behave differently in response to the order in which the build variable settings were
specified on the command line (Python versions since 3.6 now maintain dictionaries in insertion order, so this problem
is mitigated).

To accommodate these requirements, SCons also provides an ARGLIST variable that gives you direct access to build
variable settings from the command line, in the exact order they were specified, and without removing any duplicate
settings. Each element in the ARGLIST variable is itself a two-element list containing the keyword and the value of
the setting, and you must loop through, or otherwise select from, the elements of ARGLIST to process the specific
settings you want in whatever way is appropriate for your configuration. For example, the following code lets you add
to the CPPDEFINES construction variable by specifying multiple define= settings on the command line:

cppdefines = []
for key, value in ARGLIST:
 if key == 'define':
 cppdefines.append(value)
env = Environment(CPPDEFINES=cppdefines)
env.Object('prog.c')

Yields the following output:

% scons -Q define=FOO

Controlling Command-Line Build Variables

76

cc -o prog.o -c -DFOO prog.c
% scons -Q define=FOO define=BAR
cc -o prog.o -c -DFOO -DBAR prog.c

Note that the ARGLIST and ARGUMENTS variables do not interfere with each other, but rather provide slightly
different views into how you specified variable=value settings on the command line. You can use both variables
in the same SCons configuration. In general, the ARGUMENTS dictionary is more convenient to use, (since you can
just fetch variable settings through Python dictionary access), and the ARGLIST list is more flexible (since you can
examine the specific order in which the command-line variable settings were given).

10.2.1. Controlling Command-Line Build Variables
Being able to use a command-line build variable like debug=1 is handy, but it can be a chore to write specific Python
code to recognize each such variable, check for errors and provide appropriate messages, and apply the values to a
construction variable. To help with this, SCons provides a Variables container class to hold definitions of such
build variables, and a mechanism to apply the build variables to a construction environment. This allows you to control
how the build variables affect construction environments.

For example, suppose that you want to set a RELEASE construction variable on the command line whenever the time
comes to build a program for release, and that the value of this variable should be added to the build command with
the appropriate define to pass the value to the C compiler. Here's how you might do that by setting the appropriate
value in a dictionary for the $CPPDEFINES construction variable:

vars = Variables(None, ARGUMENTS)
vars.Add('RELEASE', default=0)
env = Environment(variables=vars, CPPDEFINES={'RELEASE_BUILD': '${RELEASE}'})
env.Program(['foo.c', 'bar.c'])

This SConstruct snippet first creates a Variables object which uses the values from the command-line variables
dictionary ARGUMENTS. It then uses the object's Add method to indicate that the RELEASE variable can be set on
the command line, and that if not set the default value is 0. The newly created Variables object is passed to the
Environment call used to create the construction environment using a variables keyword argument. This then
allows you to set the RELEASE build variable on the command line and have the variable show up in the command
line used to build each object from a C source file:

% scons -Q RELEASE=1
cc -o bar.o -c -DRELEASE_BUILD=1 bar.c
cc -o foo.o -c -DRELEASE_BUILD=1 foo.c
cc -o foo foo.o bar.o

The Variables() call in this example looks a little awkward. The function takes two optional arguments: a script
name and a dictionary. In order to specify the dictionary as the second argument, you must provide the script argument
as the first; since there's actually no script, use None as a sentinel value. However, if you omit all the arguments, the
default behavior is to read from the ARGUMENTS dictionary anyway, which is what we want. The example shows it
this way because the arguments were introduced in this order, but you should feel free to just leave off the arguments
if the default behavior is what you want.

Historical note: In old SCons (prior to 0.98.1 from 2008), these build variables were known as "command-line build
options." At that time, the class was named Options and the predefined functions to construct options were named
BoolOption, EnumOption, ListOption, PathOption, PackageOption and AddOptions (contrast
with the current names in Section 10.2.4, “Pre-Defined Build Variable Functions”, below). Because the Internet
has a very long memory, you may encounter these names in older SConscript files, wiki pages, blog entries,

Providing Help for Command-Line Build Variables

77

StackExchange articles, etc. These old names no longer work, but a mental substitution of “Variable” for “Option”
allows the concepts to transfer to current usage models.

10.2.2. Providing Help for Command-Line Build Variables
To make command-line build variables more useful, you may want to provide some help text to describe the available
variables when you ask for help (run scons -h). You can write this text by hand, but SCons provides some assistance.
Variables objects provide a GenerateHelpText method to generate text that describes the various variables that
have been added to it. The default text includes the help string itself plus other information such as allowed values.
(The generated text can also be customized by replacing the FormatVariableHelpText method). You then pass
the output from this method to the Help function:

vars = Variables()
vars.Add('RELEASE', help='Set to 1 to build for release', default=0)
env = Environment(variables=vars)
Help(vars.GenerateHelpText(env))

scons now displays some useful text when the -h option is used:

% scons -Q -h

RELEASE: Set to 1 to build for release
 default: 0
 actual: 0

Use scons -H for help about SCons built-in command-line options.

You can see the help output shows the default value as well as the current actual value of the build variable.

10.2.3. Reading Build Variables From a File
Being able to specify the value of a build variable on the command line is useful, but can still become tedious if you
have to specify the variable every time you run SCons. To make this easier, you can provide customized build variable
settings in a Python script by providing a file name when the Variables object is created:

vars = Variables('custom.py')
vars.Add('RELEASE', help='Set to 1 to build for release', default=0)
env = Environment(variables=vars, CPPDEFINES={'RELEASE_BUILD': '${RELEASE}'})
env.Program(['foo.c', 'bar.c'])
Help(vars.GenerateHelpText(env))

This then allows you to control the RELEASE variable by setting it in the custom.py script:

RELEASE = 1

Note that this file is actually executed like a Python script. Now when you run SCons:

% scons -Q
cc -o bar.o -c -DRELEASE_BUILD=1 bar.c

Pre-Defined Build Variable Functions

78

cc -o foo.o -c -DRELEASE_BUILD=1 foo.c
cc -o foo foo.o bar.o

And if you change the contents of custom.py to:

RELEASE = 0

The object files are rebuilt appropriately with the new variable:

% scons -Q
cc -o bar.o -c -DRELEASE_BUILD=0 bar.c
cc -o foo.o -c -DRELEASE_BUILD=0 foo.c
cc -o foo foo.o bar.o

Finally, you can combine both methods with:

vars = Variables('custom.py', ARGUMENTS)

If both a variables script and a dictionary are supplied, the dictionary is evaluated last, so values from the command
line "win" if there are any duplicate keys. This rule allows you to move some common settings to a variables script,
but still be able to override those for a given build without changing the script.

10.2.4. Pre-Defined Build Variable Functions
SCons provides a number of convenience functions that provide behavior definitions for various types of command-
line build variables. These functions all return a tuple which is ready to be passed to the Add or AddVariables
method call. You are of course free to define your own behaviors as well.

10.2.4.1. True/False Values: the BoolVariable Build Variable
Function

It is often handy to be able to specify a variable that controls a simple Boolean variable with a true or false value.
It would be even more handy to accommodate different preferences for how to represent true or false values. The
BoolVariable function makes it easy to accommodate these common representations of true or false.

The BoolVariable function takes three arguments: the name of the build variable, the default value of the build
variable, and the help string for the variable. It then returns appropriate information for passing to the Add method
of a Variables object, like so:

vars = Variables('custom.py')
vars.Add(BoolVariable('RELEASE', help='Set to build for release', default=False))
env = Environment(variables=vars, CPPDEFINES={'RELEASE_BUILD': '${RELEASE}'})
env.Program('foo.c')

With this build variable in place, the RELEASE variable can now be enabled by setting it to the value yes or t:

% scons -Q RELEASE=yes foo.o
cc -o foo.o -c -DRELEASE_BUILD=True foo.c

% scons -Q RELEASE=t foo.o

Pre-Defined Build Variable Functions

79

cc -o foo.o -c -DRELEASE_BUILD=True foo.c

Other values that equate to true include y, 1, on and all.

Conversely, RELEASE may now be given a false value by setting it to no or f:

% scons -Q RELEASE=no foo.o
cc -o foo.o -c -DRELEASE_BUILD=False foo.c

% scons -Q RELEASE=f foo.o
cc -o foo.o -c -DRELEASE_BUILD=False foo.c

Other values that equate to false include n, 0, off and none.

Lastly, if you try to specify any other value, SCons supplies an appropriate error message:

% scons -Q RELEASE=bad_value foo.o

scons: *** Error converting option: 'RELEASE'
Invalid value for boolean variable: 'bad_value'
File "/home/my/project/SConstruct", line 3, in <module>

10.2.4.2. Single Value From a Selection: the EnumVariable Build
Variable Function

Suppose that you want to allow setting a COLOR variable that selects a background color to be displayed by an
application, but that you want to restrict the choices to a specific set of allowed colors. You can set this up quite
easily using the EnumVariable function, which takes a list of allowed_values in addition to the variable name,
default value, and help text arguments:

vars = Variables('custom.py')
vars.Add(
 EnumVariable(
 'COLOR',
 help='Set background color',
 default='red',
 allowed_values=('red', 'green', 'blue'),
)
)
env = Environment(variables=vars, CPPDEFINES={'COLOR': '"${COLOR}"'})
env.Program('foo.c')
Help(vars.GenerateHelpText(env))

You can now explicitly set the COLOR build variable to any of the specified allowed values:

% scons -Q COLOR=red foo.o
cc -o foo.o -c -DCOLOR="red" foo.c
% scons -Q COLOR=blue foo.o
cc -o foo.o -c -DCOLOR="blue" foo.c
% scons -Q COLOR=green foo.o
cc -o foo.o -c -DCOLOR="green" foo.c

But, importantly, an attempt to set COLOR to a value that's not in the list generates an error message:

Pre-Defined Build Variable Functions

80

% scons -Q COLOR=magenta foo.o

scons: *** Invalid value for enum variable 'COLOR': 'magenta'. Valid values are: ('red', 'green', 'blue')
File "/home/my/project/SConstruct", line 10, in <module>

This example can also serve to further illustrate help generation: the help message here picks up not only the help
text, but augments it with information gathered from allowed_values and default:

% scons -Q -h

COLOR: Set background color (red|green|blue)
 default: red
 actual: red

Use scons -H for help about SCons built-in command-line options.

The EnumVariable function also provides a way to map alternate names to allowed values. Suppose, for example,
you want to allow the word navy to be used as a synonym for blue. You do this by adding a map dictionary that
maps its key values to the desired allowed value:

vars = Variables('custom.py')
vars.Add(
 EnumVariable(
 'COLOR',
 help='Set background color',
 default='red',
 allowed_values=('red', 'green', 'blue'),
 map={'navy': 'blue'},
)
)
env = Environment(variables=vars, CPPDEFINES={'COLOR': '"${COLOR}"'})
env.Program('foo.c')

Now you can supply navy on the command line, and SCons translates that into blue when it comes time to use the
COLOR variable to build a target:

% scons -Q COLOR=navy foo.o
cc -o foo.o -c -DCOLOR="blue" foo.c

By default, when using the EnumVariable function, the allowed values are case-sensitive:

% scons -Q COLOR=Red foo.o

scons: *** Invalid value for enum variable 'COLOR': 'Red'. Valid values are: ('red', 'green', 'blue')
File "/home/my/project/SConstruct", line 10, in <module>
% scons -Q COLOR=BLUE foo.o

scons: *** Invalid value for enum variable 'COLOR': 'BLUE'. Valid values are: ('red', 'green', 'blue')
File "/home/my/project/SConstruct", line 10, in <module>
% scons -Q COLOR=nAvY foo.o

scons: *** Invalid value for enum variable 'COLOR': 'nAvY'. Valid values are: ('red', 'green', 'blue')
File "/home/my/project/SConstruct", line 10, in <module>

Pre-Defined Build Variable Functions

81

The EnumVariable function can take an additional ignorecase keyword argument that, when set to 1, tells
SCons to allow case differences when the values are specified:

vars = Variables('custom.py')
vars.Add(
 EnumVariable(
 'COLOR',
 help='Set background color',
 default='red',
 allowed_values=('red', 'green', 'blue'),
 map={'navy': 'blue'},
 ignorecase=1,
)
)
env = Environment(variables=vars, CPPDEFINES={'COLOR': '"${COLOR}"'})
env.Program('foo.c')

Which yields the output:

% scons -Q COLOR=Red foo.o
cc -o foo.o -c -DCOLOR="Red" foo.c
% scons -Q COLOR=BLUE foo.o
cc -o foo.o -c -DCOLOR="BLUE" foo.c
% scons -Q COLOR=nAvY foo.o
cc -o foo.o -c -DCOLOR="blue" foo.c
% scons -Q COLOR=green foo.o
cc -o foo.o -c -DCOLOR="green" foo.c

Notice that an ignorecase value of 1 preserves the case-spelling supplied, only ignoring the case for matching.
If you want SCons to translate the names into lower-case, regardless of the case used by the user, specify an
ignorecase value of 2:

vars = Variables('custom.py')
vars.Add(
 EnumVariable(
 'COLOR',
 help='Set background color',
 default='red',
 allowed_values=('red', 'green', 'blue'),
 map={'navy': 'blue'},
 ignorecase=2,
)
)
env = Environment(variables=vars, CPPDEFINES={'COLOR': '"${COLOR}"'})
env.Program('foo.c')

Now SCons uses values of red, green or blue regardless of how those values are spelled on the command line:

% scons -Q COLOR=Red foo.o
cc -o foo.o -c -DCOLOR="red" foo.c
% scons -Q COLOR=nAvY foo.o

Pre-Defined Build Variable Functions

82

cc -o foo.o -c -DCOLOR="blue" foo.c
% scons -Q COLOR=GREEN foo.o
cc -o foo.o -c -DCOLOR="green" foo.c

10.2.4.3. Multiple Values From a List: the ListVariable Build
Variable Function

Another way in which you might want to control a build variable is to specify a list of allowed values, of which one
or more can be chosen (where EnumVariable allows exactly one value to be chosen). SCons provides this through
the ListVariable function. If, for example, you want to be able to set a COLORS variable to one or more of the
allowed values:

vars = Variables('custom.py')
vars.Add(
 ListVariable(
 'COLORS', help='List of colors', default=0, names=['red', 'green', 'blue']
)
)
env = Environment(variables=vars, CPPDEFINES={'COLORS': '"${COLORS}"'})
env.Program('foo.c')

You can now specify a comma-separated list of allowed values, which get translated into a space-separated list for
passing to the build commands:

% scons -Q COLORS=red,blue foo.o
cc -o foo.o -c -DCOLORS="red -Dblue" foo.c
% scons -Q COLORS=blue,green,red foo.o
cc -o foo.o -c -DCOLORS="blue -Dgreen -Dred" foo.c

In addition, the ListVariable function lets you specify explicit keywords of all or none to select all of the
allowed values, or none of them, respectively:

% scons -Q COLORS=all foo.o
cc -o foo.o -c -DCOLORS="red -Dgreen -Dblue" foo.c
% scons -Q COLORS=none foo.o
cc -o foo.o -c -DCOLORS="" foo.c

And, of course, an illegal value still generates an error message:

% scons -Q COLORS=magenta foo.o

scons: *** Invalid value(s) for variable 'COLORS': 'magenta'. Valid values are: blue,green,red,all,none
File "/home/my/project/SConstruct", line 7, in <module>

You can use this last characteristic as a way to enforce at least one of your valid options being chosen by specifying
the valid values with the names parameter and then giving a value not in that list as the default parameter - that
way if no value is given on the command line, the default is chosen, SCons errors out as this is invalid. The example
is, in fact, set up that way by using 0 as the default:

% scons -Q foo.o

scons: *** Invalid value(s) for variable 'COLORS': '0'. Valid values are: blue,green,red,all,none
File "/home/my/project/SConstruct", line 7, in <module>

Pre-Defined Build Variable Functions

83

This technique works for EnumVariable as well.

10.2.4.4. Path Names: the PathVariable Build Variable Function

SCons provides a PathVariable function to make it easy to create a build variable to control an expected path
name. If, for example, you need to define a preprocessor macro that controls the location of a configuration file:

vars = Variables('custom.py')
vars.Add(
 PathVariable(
 'CONFIG', help='Path to configuration file', default='/etc/my_config'
)
)
env = Environment(variables=vars, CPPDEFINES={'CONFIG_FILE': '"$CONFIG"'})
env.Program('foo.c')

This allows you to override the CONFIG build variable on the command line as necessary:

% scons -Q foo.o
cc -o foo.o -c -DCONFIG_FILE="/etc/my_config" foo.c
% scons -Q CONFIG=/usr/local/etc/other_config foo.o
scons: `foo.o' is up to date.

By default, PathVariable checks to make sure that the specified path exists and generates an error if it doesn't:

% scons -Q CONFIG=/does/not/exist foo.o

scons: *** Path for variable 'CONFIG' does not exist: /does/not/exist
File "/home/my/project/SConstruct", line 7, in <module>

PathVariable provides a number of methods that you can use to change this behavior. If you want to ensure that
any specified paths are, in fact, files and not directories, use the PathVariable.PathIsFile method as the
validation function:

vars = Variables('custom.py')
vars.Add(
 PathVariable(
 'CONFIG',
 help='Path to configuration file',
 default='/etc/my_config',
 validator=PathVariable.PathIsFile,
)
)
env = Environment(variables=vars, CPPDEFINES={'CONFIG_FILE': '"$CONFIG"'})
env.Program('foo.c')

Conversely, to ensure that any specified paths are directories and not files, use the PathVariable.PathIsDir
method as the validation function:

vars = Variables('custom.py')
vars.Add(

Pre-Defined Build Variable Functions

84

 PathVariable(
 'DBDIR',
 help='Path to database directory',
 default='/var/my_dbdir',
 validator=PathVariable.PathIsDir,
)
)
env = Environment(variables=vars, CPPDEFINES={'DBDIR': '"$DBDIR"'})
env.Program('foo.c')

If you want to make sure that any specified paths are directories, and you would like the directory created if it doesn't
already exist, use the PathVariable.PathIsDirCreate method as the validation function:

vars = Variables('custom.py')
vars.Add(
 PathVariable(
 'DBDIR',
 help='Path to database directory',
 default='/var/my_dbdir',
 validator=PathVariable.PathIsDirCreate,
)
)
env = Environment(variables=vars, CPPDEFINES={'DBDIR': '"$DBDIR"'})
env.Program('foo.c')

Lastly, if you don't care whether the path exists, is a file, or a directory, use the PathVariable.PathAccept
method to accept any path you supply:

vars = Variables('custom.py')
vars.Add(
 PathVariable(
 'OUTPUT',
 help='Path to output file or directory',
 default=None,
 validator=PathVariable.PathAccept,
)
)
env = Environment(variables=vars, CPPDEFINES={'OUTPUT': '"$OUTPUT"'})
env.Program('foo.c')

10.2.4.5. Enabled/Disabled Path Names: the PackageVariable
Build Variable Function

Sometimes you want to give even more control over a path name variable, allowing them to be explicitly enabled or
disabled by using yes or no keywords, in addition to allowing supplying an explicit path name. SCons provides the
PackageVariable function to support this:

vars = Variables("custom.py")

Adding Multiple Command-Line Build Variables at Once

85

vars.Add(
 PackageVariable("PACKAGE", help="Location package", default="/opt/location")
)
env = Environment(variables=vars, CPPDEFINES={"PACKAGE": '"$PACKAGE"'})
env.Program("foo.c")

When the SConscript file uses the PackageVariable function, you can still use the default or supply an
overriding path name, but you can now explicitly set the specified variable to a value that indicates the package should
be enabled (in which case the default should be used) or disabled:

% scons -Q foo.o
cc -o foo.o -c -DPACKAGE="/opt/location" foo.c
% scons -Q PACKAGE=/usr/local/location foo.o
cc -o foo.o -c -DPACKAGE="/usr/local/location" foo.c
% scons -Q PACKAGE=yes foo.o
cc -o foo.o -c -DPACKAGE="True" foo.c
% scons -Q PACKAGE=no foo.o
cc -o foo.o -c -DPACKAGE="False" foo.c

10.2.5. Adding Multiple Command-Line Build Variables at
Once
Lastly, SCons provides a way to add multiple build variables to a Variables object at once. Instead of having to call
the Add method multiple times, you can call the AddVariables method with the build variables to be added to the
object. Each build variable is specified as either a tuple of arguments, or as a call to one of the pre-defined functions
for pre-packaged command-line build variables, which returns such a tuple. Note that an individual tuple cannot take
keyword arguments in the way that a call to Add or one of the build variable functions can. The order of variables
given to AddVariables does not matter.

vars = Variables()
vars.AddVariables(
 ('RELEASE', 'Set to 1 to build for release', 0),
 ('CONFIG', 'Configuration file', '/etc/my_config'),
 BoolVariable('warnings', help='compilation with -Wall and similar', default=True),
 EnumVariable(
 'debug',
 help='debug output and symbols',
 default='no',
 allowed_values=('yes', 'no', 'full'),
 map={},
 ignorecase=0,
),
 ListVariable(
 'shared',
 help='libraries to build as shared libraries',
 default='all',
 names=list_of_libs,
),
 PackageVariable(
 'x11', help='use X11 installed here (yes = search some places)', default='yes'
),

Handling Unknown Command-Line Build Variables: the
UnknownVariables Function

86

 PathVariable('qtdir', help='where the root of Qt is installed', default=qtdir),
)

10.2.6. Handling Unknown Command-Line Build
Variables: the UnknownVariables Function
Humans, of course, occasionally misspell variable names in their command-line settings. SCons does not generate an
error or warning for any unknown variables specified on the command line, because it can not reliably tell whether
a given "misspelled" variable is really unknown and a potential problem or not. After all, you might be processing
arguments directly using ARGUMENTS or ARGLIST with some Python code in your SConscript file.

If, however, you are using a Variables object to define a specific set of command-line build variables that you expect
to be able to set, you may want to provide an error message or warning of your own if a variable setting is specified
that is not among the defined list of variable names known to the Variables object. You can do this by calling the
UnknownVariables method of the Variables object to get the settings Variables did not recognize:

vars = Variables(None)
vars.Add('RELEASE', help='Set to 1 to build for release', default=0)
env = Environment(variables=vars, CPPDEFINES={'RELEASE_BUILD': '${RELEASE}'})
unknown = vars.UnknownVariables()
if unknown:
 print("Unknown variables: %s" % " ".join(unknown.keys()))
 Exit(1)
env.Program('foo.c')

The UnknownVariables method returns a dictionary containing the keywords and values of any variables specified
on the command line that are not among the variables known to the Variables object (from having been specified
using the Variables object's Add method). The example above, checks whether the dictionary returned by
UnknownVariables is non-empty, and if so prints the Python list containing the names of the unknown variables
and then calls the Exit function to terminate SCons:

% scons -Q NOT_KNOWN=foo
Unknown variables: NOT_KNOWN

Of course, you can process the items in the dictionary returned by the UnknownVariables function in any way
appropriate to your build configuration, including just printing a warning message but not exiting, logging an error
somewhere, etc.

Note that you must delay the call of UnknownVariables until after you have applied the Variables object to a
construction environment with the variables= keyword argument of an Environment call: the variables in the
object are not fully processed until this has happened.

10.3. Command-Line Targets

10.3.1. Fetching Command-Line Targets: the
COMMAND_LINE_TARGETS Variable
SCons provides a COMMAND_LINE_TARGETS variable that lets you fetch the list of targets that were specified on
the command line. You can use the targets to manipulate the build in any way you wish. As a simple example, suppose

Controlling the Default Targets: the Default Function

87

that you want to print a reminder whenever a specific program is built. You can do this by checking for the target in
the COMMAND_LINE_TARGETS list:

if 'bar' in COMMAND_LINE_TARGETS:
 print("Don't forget to copy `bar' to the archive!")
Default(Program('foo.c'))
Program('bar.c')

Now, running SCons with the default target works as usual, but explicitly specifying the bar target on the command
line generates the warning message:

% scons -Q
cc -o foo.o -c foo.c
cc -o foo foo.o
% scons -Q bar
Don't forget to copy `bar' to the archive!
cc -o bar.o -c bar.c
cc -o bar bar.o

Another practical use for the COMMAND_LINE_TARGETS variable might be to speed up a build by only reading
certain subsidiary SConscript files if a specific target is requested.

10.3.2. Controlling the Default Targets: the Default
Function
You can control which targets SCons builds by default - that is, when there are no targets specified on the command line.
As mentioned previously, SCons normally builds every target in or below the current directory unless you explicitly
specify one or more targets on the command line. Sometimes, however, you may want to specify that only certain
programs, or programs in certain directories, should be built by default. You do this with the Default function:

env = Environment()
hello = env.Program('hello.c')
env.Program('goodbye.c')
Default(hello)

This SConstruct file knows how to build two programs, hello and goodbye, but only builds the hello program
by default:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q
scons: `hello' is up to date.
% scons -Q goodbye
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o

Note that, even when you use the Default function in your SConstruct file, you can still explicitly specify the
current directory (.) on the command line to tell SCons to build everything in (or below) the current directory:

% scons -Q .

Controlling the Default Targets: the Default Function

88

cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
cc -o hello.o -c hello.c
cc -o hello hello.o

You can also call the Default function more than once, in which case each call adds to the list of targets to be
built by default:

env = Environment()
prog1 = env.Program('prog1.c')
Default(prog1)
prog2 = env.Program('prog2.c')
prog3 = env.Program('prog3.c')
Default(prog3)

Or you can specify more than one target in a single call to the Default function:

env = Environment()
prog1 = env.Program('prog1.c')
prog2 = env.Program('prog2.c')
prog3 = env.Program('prog3.c')
Default(prog1, prog3)

Either of these last two examples build only the prog1 and prog3 programs by default:

% scons -Q
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
cc -o prog3.o -c prog3.c
cc -o prog3 prog3.o
% scons -Q .
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o

You can list a directory as an argument to Default:

env = Environment()
env.Program(['prog1/main.c', 'prog1/foo.c'])
env.Program(['prog2/main.c', 'prog2/bar.c'])
Default('prog1')

In which case only the target(s) in that directory are built by default:

% scons -Q
cc -o prog1/foo.o -c prog1/foo.c
cc -o prog1/main.o -c prog1/main.c
cc -o prog1/main prog1/main.o prog1/foo.o
% scons -Q
scons: `prog1' is up to date.
% scons -Q .

Controlling the Default Targets: the Default Function

89

cc -o prog2/bar.o -c prog2/bar.c
cc -o prog2/main.o -c prog2/main.c
cc -o prog2/main prog2/main.o prog2/bar.o

Lastly, if for some reason you don't want any targets built by default, you can use the Python None variable:

env = Environment()
prog1 = env.Program('prog1.c')
prog2 = env.Program('prog2.c')
Default(None)

Which would produce build output like:

% scons -Q
scons: *** No targets specified and no Default() targets found. Stop.
Found nothing to build
% scons -Q .
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o

10.3.2.1. Fetching the List of Default Targets: the DEFAULT_TARGETS
Variable

SCons provides a DEFAULT_TARGETS variable that lets you get at the current list of default targets specified by
calls to the Default function or method. The DEFAULT_TARGETS variable has two important differences from the
COMMAND_LINE_TARGETS variable. First, the DEFAULT_TARGETS variable is a list of internal SCons nodes, so
you need to convert the list elements to strings if you want to print them or look for a specific target name. You can
do this easily by calling the str on the elements in a list comprehension:

prog1 = Program('prog1.c')
Default(prog1)
print("DEFAULT_TARGETS is %s" % [str(t) for t in DEFAULT_TARGETS])

(Keep in mind that the manipulation of the DEFAULT_TARGETS list takes place during the first phase when SCons
is reading up the SConscript files, which is obvious if you leave off the -Q flag when you run SCons:)

% scons
scons: Reading SConscript files ...
DEFAULT_TARGETS is ['prog1']
scons: done reading SConscript files.
scons: Building targets ...
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
scons: done building targets.

Second, the contents of the DEFAULT_TARGETS list changes in response to calls to the Default function, as you
can see from the following SConstruct file:

Fetching the List of Build Targets, Regardless of Origin:
the BUILD_TARGETS Variable

90

prog1 = Program('prog1.c')
Default(prog1)
print("DEFAULT_TARGETS is now %s" % [str(t) for t in DEFAULT_TARGETS])
prog2 = Program('prog2.c')
Default(prog2)
print("DEFAULT_TARGETS is now %s" % [str(t) for t in DEFAULT_TARGETS])

Which yields the output:

% scons
scons: Reading SConscript files ...
DEFAULT_TARGETS is now ['prog1']
DEFAULT_TARGETS is now ['prog1', 'prog2']
scons: done reading SConscript files.
scons: Building targets ...
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o
scons: done building targets.

In practice, this simply means that you need to pay attention to the order in which you call the Default function
and refer to the DEFAULT_TARGETS list, to make sure that you don't examine the list before you have added the
default targets you expect to find in it.

10.3.3. Fetching the List of Build Targets, Regardless of
Origin: the BUILD_TARGETS Variable
You have already seen the COMMAND_LINE_TARGETS variable, which contains a list of targets specified on the
command line, and the DEFAULT_TARGETS variable, which contains a list of targets specified via calls to the
Default method or function. Sometimes, however, you want a list of whatever targets SCons tries to build, regardless
of whether the targets came from the command line or a Default call. You could code this up by hand, as follows:

if COMMAND_LINE_TARGETS:
 targets = COMMAND_LINE_TARGETS
else:
 targets = DEFAULT_TARGETS

SCons, however, provides a convenient BUILD_TARGETS variable that eliminates the need for this by-hand
manipulation. Essentially, the BUILD_TARGETS variable contains a list of the command-line targets, if any were
specified, and if no command-line targets were specified, it contains a list of the targets specified via the Default
method or function.

Because BUILD_TARGETS may contain a list of SCons nodes, you must convert the list elements to strings if you
want to print them or look for a specific target name, just like the DEFAULT_TARGETS list:

prog1 = Program('prog1.c')
Program('prog2.c')
Default(prog1)
print("BUILD_TARGETS is %s" % [str(t) for t in BUILD_TARGETS])

Fetching the List of Build Targets, Regardless of Origin:
the BUILD_TARGETS Variable

91

Notice how the value of BUILD_TARGETS changes depending on whether a target is specified on the command line
- BUILD_TARGETS takes from DEFAULT_TARGETS only if there are no COMMAND_LINE_TARGETS:

% scons -Q
BUILD_TARGETS is ['prog1']
cc -o prog1.o -c prog1.c
cc -o prog1 prog1.o
% scons -Q prog2
BUILD_TARGETS is ['prog2']
cc -o prog2.o -c prog2.c
cc -o prog2 prog2.o
% scons -Q -c .
BUILD_TARGETS is ['.']
Removed prog1.o
Removed prog1
Removed prog2.o
Removed prog2

11 Installing Files in Other
Directories: the Install
Builder

Once a program is built, it is often appropriate to install it in another directory for public use. You use the Install
method to arrange for a program, or any other file, to be copied into a destination directory:

env = Environment()
hello = env.Program('hello.c')
env.Install('/usr/bin', hello)

Note, however, that installing a file is still considered a type of file "build." This is important when you remember that
the default behavior of SCons is to build files in or below the current directory. If, as in the example above, you are
installing files in a directory outside of the top-level SConstruct file's directory tree, you must specify that directory
(or a higher directory, such as /) for it to install anything there:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q /usr/bin
Install file: "hello" as "/usr/bin/hello"

It can, however, be cumbersome to remember (and type) the specific destination directory in which the program (or
other file) should be installed. A call to Default can be used to add the directory to the list of default targets,
removing the need to type it, but sometimes you don't want to install on every build. This is an area where the Alias
function comes in handy, allowing you, for example, to create a pseudo-target named install that can expand to
the specified destination directory:

env = Environment()
hello = env.Program('hello.c')
env.Install('/usr/bin', hello)
env.Alias('install', '/usr/bin')

This then yields the more natural ability to install the program in its destination as a separate invocation, as follows:

Installing Multiple Files in a Directory

93

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q install
Install file: "hello" as "/usr/bin/hello"

11.1. Installing Multiple Files in a Directory
You can install multiple files into a directory simply by calling the Install function multiple times:

env = Environment()
hello = env.Program('hello.c')
goodbye = env.Program('goodbye.c')
env.Install('/usr/bin', hello)
env.Install('/usr/bin', goodbye)
env.Alias('install', '/usr/bin')

Or, more succinctly, listing the multiple input files in a list (just like you can do with any other builder):

env = Environment()
hello = env.Program('hello.c')
goodbye = env.Program('goodbye.c')
env.Install('/usr/bin', [hello, goodbye])
env.Alias('install', '/usr/bin')

Either of these two examples yields:

% scons -Q install
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
Install file: "goodbye" as "/usr/bin/goodbye"
cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello"

11.2. Installing a File Under a Different Name
The Install method preserves the name of the file when it is copied into the destination directory. If you need to
change the name of the file when you copy it, use the InstallAs function:

env = Environment()
hello = env.Program('hello.c')
env.InstallAs('/usr/bin/hello-new', hello)
env.Alias('install', '/usr/bin')

This installs the hello program with the name hello-new as follows:

% scons -Q install
cc -o hello.o -c hello.c

Installing Multiple Files Under Different Names

94

cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new"

11.3. Installing Multiple Files Under Different
Names
If you have multiple files that all need to be installed with different file names, you can either call the InstallAs
function multiple times, or as a shorthand, you can supply same-length lists for both the target and source arguments:

env = Environment()
hello = env.Program('hello.c')
goodbye = env.Program('goodbye.c')
env.InstallAs(['/usr/bin/hello-new',
 '/usr/bin/goodbye-new'],
 [hello, goodbye])
env.Alias('install', '/usr/bin')

In this case, the InstallAs function loops through both lists simultaneously, and copies each source file into its
corresponding target file name:

% scons -Q install
cc -o goodbye.o -c goodbye.c
cc -o goodbye goodbye.o
Install file: "goodbye" as "/usr/bin/goodbye-new"
cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new"

11.4. Installing a Shared Library
If a shared library is created with the $SHLIBVERSION variable set, scons will create symbolic links as needed based
on that variable. To properly install such a library including the symbolic links, use the InstallVersionedLib
function.

For example, on a Linux system, this instruction:

foo = env.SharedLibrary(target="foo", source="foo.c", SHLIBVERSION="1.2.3")

Will produce a shared library libfoo.so.1.2.3 and symbolic links libfoo.so and libfoo.so.1 which
point to libfoo.so.1.2.3. You can use the Node returned by the SharedLibrary builder in order to install
the library and its symbolic links in one go without having to list them individually:

env.InstallVersionedLib(target="lib", source=foo)

On systems which expect a shared library to be installed both with a name that indicates the version, for run-
time resolution, and as a plain name, for link-time resolution, the InstallVersionedLib function can be used.
Symbolic links appropriate to the type of system will be generated based on symlinks of the source library.

12 Platform-Independent File
System Manipulation

SCons provides a number of platform-independent functions, called factories, that perform common file system
manipulations like copying, moving or deleting files and directories, or making directories. These functions are
factories because they don't perform the action at the time they're called, they each return an Action object that
can be executed at the appropriate time.

12.1. Copying Files or Directories: The Copy
Factory
Suppose you want to arrange to make a copy of a file, and don't have a suitable pre-existing builder. 1 One way would
be to use the Copy action factory in conjunction with the Command builder:

Command("file.out", "file.in", Copy("$TARGET", "$SOURCE"))

Notice that the action returned by the Copy factory will expand the $TARGET and $SOURCE strings at the time
file.out is built, and that the order of the arguments is the same as that of a builder itself--that is, target first,
followed by source:

% scons -Q
Copy("file.out", "file.in")

You can, of course, name a file explicitly instead of using $TARGET or $SOURCE:

Command("file.out", [], Copy("$TARGET", "file.in"))

Which executes as:

% scons -Q
Copy("file.out", "file.in")

1 Unfortunately, in the early days of SCons design, we used the name Copy for the function that returns a copy of the environment, otherwise that
would be the logical choice for a Builder that copies a file or directory tree to a target location.

Deleting Files or Directories: The Delete Factory

96

The usefulness of the Copy factory becomes more apparent when you use it in a list of actions passed to the Command
builder. For example, suppose you needed to run a file through a utility that only modifies files in-place, and can't
"pipe" input to output. One solution is to copy the source file to a temporary file name, run the utility, and then copy
the modified temporary file to the target, which the Copy factory makes extremely easy:

Command(
 "file.out",
 "file.in",
 action=[
 Copy("tempfile", "$SOURCE"),
 "modify tempfile",
 Copy("$TARGET", "tempfile"),
],
)

The output then looks like:

% scons -Q
Copy("tempfile", "file.in")
modify tempfile
Copy("file.out", "tempfile")

The Copy factory has a third optional argument which controls how symlinks are copied.

Symbolic link shallow copied as a new symbolic link:
Command("LinkIn", "LinkOut", Copy("$TARGET", "$SOURCE", symlinks=True))

Symbolic link target copied as a file or directory:
Command("LinkIn", "FileOrDirectoryOut", Copy("$TARGET", "$SOURCE", symlinks=False))

12.2. Deleting Files or Directories: The Delete
Factory
If you need to delete a file, then the Delete factory can be used in much the same way as the Copy factory. For
example, if we want to make sure that the temporary file in our last example doesn't exist before we copy to it, we
could add Delete to the beginning of the command list:

Command(
 "file.out",
 "file.in",
 action=[
 Delete("tempfile"),
 Copy("tempfile", "$SOURCE"),
 "modify tempfile",
 Copy("$TARGET", "tempfile"),
],
)

Moving (Renaming) Files or Directories: The Move
Factory

97

Which then executes as follows:

% scons -Q
Delete("tempfile")
Copy("tempfile", "file.in")
modify tempfile
Copy("file.out", "tempfile")

Of course, like all of these Action factories, the Delete factory also expands $TARGET and $SOURCE variables
appropriately. For example:

Command(
 "file.out",
 "file.in",
 action=[
 Delete("$TARGET"),
 Copy("$TARGET", "$SOURCE"),
],
)

Executes as:

% scons -Q
Delete("file.out")
Copy("file.out", "file.in")

Note, however, that you typically don't need to call the Delete factory explicitly in this way; by default, SCons
deletes its target(s) for you before executing any action.

One word of caution about using the Delete factory: it has the same variable expansions available as any other
factory, including the $SOURCE variable. Specifying Delete("$SOURCE") is not something you usually want to
do!

12.3. Moving (Renaming) Files or Directories:
The Move Factory
The Move factory allows you to rename a file or directory. For example, if we don't want to copy the temporary file,
we could use:

Command(
 "file.out",
 "file.in",
 action=[
 Copy("tempfile", "$SOURCE"),
 "modify tempfile",
 Move("$TARGET", "tempfile"),
],
)

Updating the Modification Time of a File: The Touch
Factory

98

Which would execute as:

% scons -Q
Copy("tempfile", "file.in")
modify tempfile
Move("file.out", "tempfile")

12.4. Updating the Modification Time of a File:
The Touch Factory
If you just need to update the recorded modification time for a file, use the Touch factory:

Command(
 "file.out",
 "file.in",
 action=[
 Copy("$TARGET", "$SOURCE"),
 Touch("$TARGET"),
]
)

Which executes as:

% scons -Q
Copy("file.out", "file.in")
Touch("file.out")

12.5. Creating a Directory: The Mkdir Factory
If you need to create a directory, use the Mkdir factory. For example, if we need to process a file in a temporary
directory in which the processing tool will create other files that we don't care about, you could use:

Command(
 "file.out",
 "file.in",
 action=[
 Delete("tempdir"),
 Mkdir("tempdir"),
 Copy("tempdir/${SOURCE.file}", "$SOURCE"),
 "process tempdir",
 Move("$TARGET", "tempdir/output_file"),
 Delete("tempdir"),
],
)

Which executes as:

% scons -Q
Delete("tempdir")

Changing File or Directory Permissions: The Chmod
Factory

99

Mkdir("tempdir")
Copy("tempdir/file.in", "file.in")
process tempdir
Move("file.out", "tempdir/output_file")
scons: *** [file.out] tempdir/output_file: No such file or directory

12.6. Changing File or Directory Permissions:
The Chmod Factory
To change permissions on a file or directory, use the Chmod factory. The permission argument uses POSIX-style
permission bits and should typically be expressed as an octal, not decimal, number:

Command(
 "file.out",
 "file.in",
 action=[
 Copy("$TARGET", "$SOURCE"),
 Chmod("$TARGET", 0o755),
]
)

Which executes:

% scons -Q
Copy("file.out", "file.in")
Chmod("file.out", 0o755)

12.7. Executing an action immediately: the
Execute Function
We've been showing you how to use Action factories in the Command function. You can also execute an Action returned
by a factory (or actually, any Action) at the time the SConscript file is read by using the Execute function. For
example, if we need to make sure that a directory exists before we build any targets,

Execute(Mkdir('/tmp/my_temp_directory'))

Notice that this will create the directory while the SConscript file is being read:

% scons
scons: Reading SConscript files ...
Mkdir("/tmp/my_temp_directory")
scons: done reading SConscript files.
scons: Building targets ...
scons: `.' is up to date.
scons: done building targets.

If you're familiar with Python, you may wonder why you would want to use this instead of just calling the native
Python os.mkdir() function. The advantage here is that the Mkdir action will behave appropriately if the user

Executing an action immediately: the Execute Function

100

specifies the SCons -n or -q options--that is, it will print the action but not actually make the directory when -n is
specified, or make the directory but not print the action when -q is specified.

The Execute function returns the exit status or return value of the underlying action being executed. It will also print
an error message if the action fails and returns a non-zero value. SCons will not, however, actually stop the build if
the action fails. If you want the build to stop in response to a failure in an action called by Execute, you must do so
by explicitly checking the return value and calling the Exit function (or a Python equivalent):

if Execute(Mkdir('/tmp/my_temp_directory')):
 # A problem occurred while making the temp directory.
 Exit(1)

13 Controlling Removal of
Targets

There are two occasions when SCons will, by default, remove target files. The first is when SCons determines that
an target file needs to be rebuilt and removes the existing version of the target before executing The second is when
SCons is invoked with the -c option to "clean" a tree of its built targets. These behaviours can be suppressed with
the Precious and NoClean functions, respectively.

13.1. Preventing target removal during build:
the Precious Function
By default, SCons removes targets before building them. Sometimes, however, this is not what you want. For example,
you may want to update a library incrementally, not by having it deleted and then rebuilt from all of the constituent
object files. In such cases, you can use the Precious method to prevent SCons from removing the target before
it is built:

 env = Environment(RANLIBCOM='')
 lib = env.Library('foo', ['f1.c', 'f2.c', 'f3.c'])
 env.Precious(lib)

Although the output doesn't look any different, SCons does not, in fact, delete the target library before rebuilding it:

% scons -Q
cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o

SCons will, however, still delete files marked as Precious when the -c option is used.

13.2. Preventing target removal during clean:
the NoClean Function
By default, SCons removes all built targets when invoked with the -c option to clean a source tree of built targets.
Sometimes, however, this is not what you want. For example, you may want to remove only intermediate generated

Removing additional files during clean: the Clean
Function

102

files (such as object files), but leave the final targets (the libraries) untouched. In such cases, you can use the NoClean
method to prevent SCons from removing a target during a clean:

env = Environment(RANLIBCOM='')
lib = env.Library('foo', ['f1.c', 'f2.c', 'f3.c'])
env.NoClean(lib)

Notice that the libfoo.a is not listed as a removed file:

% scons -Q
cc -o f1.o -c f1.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
ar rc libfoo.a f1.o f2.o f3.o
% scons -c
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Cleaning targets ...
Removed f1.o
Removed f2.o
Removed f3.o
scons: done cleaning targets.

13.3. Removing additional files during clean:
the Clean Function
There may be additional files that you want removed when the -c option is used, but which SCons doesn't know
about because they're not normal target files. For example, perhaps a command you invoke creates a log file as part
of building the target file you want. You would like the log file cleaned, but you don't want to have to teach SCons
that the command "builds" two files.

You can use the Clean function to arrange for additional files to be removed when the -c option is used. Notice,
however, that the Clean function takes two arguments, and the second argument is the name of the additional file
you want cleaned (foo.log in this example):

t = Command('foo.out', 'foo.in', 'build -o $TARGET $SOURCE')
Clean(t, 'foo.log')

The first argument is the target with which you want the cleaning of this additional file associated. In the above example,
we've used the return value from the Command function, which represents the foo.out target. Now whenever the
foo.out target is cleaned by the -c option, the foo.log file will be removed as well:

% scons -Q
build -o foo.out foo.in
% scons -Q -c
Removed foo.out
Removed foo.log

14 Hierarchical Builds

The source code for large software projects rarely stays in a single directory, but is nearly always divided into a
hierarchy of directories. Organizing a large software build using SCons involves creating a hierarchy of build scripts
which are connected together using the SConscript function.

14.1. SConscript Files
As we've already seen, the build script at the top of the tree is called SConstruct. The top-level SConstruct file
can use the SConscript function to include other subsidiary scripts in the build. These subsidiary scripts can, in turn,
use the SConscript function to include still other scripts in the build. By convention, these subsidiary scripts are
usually named SConscript. For example, a top-level SConstruct file might arrange for four subsidiary scripts
to be included in the build as follows:

SConscript(
 [
 'drivers/display/SConscript',
 'drivers/mouse/SConscript',
 'parser/SConscript',
 'utilities/SConscript',
]
)

In this case, the SConstruct file lists all of the SConscript files in the build explicitly. (Note, however, that
not every directory in the tree necessarily has an SConscript file.) Alternatively, the drivers subdirectory might
contain an intermediate SConscript file, in which case the SConscript call in the top-level SConstruct file
would look like:

SConscript(['drivers/SConscript', 'parser/SConscript', 'utilities/SConscript'])

And the subsidiary SConscript file in the drivers subdirectory would look like:

SConscript(['display/SConscript', 'mouse/SConscript'])

Path Names Are Relative to the SConscript Directory

104

Whether you list all of the SConscript files in the top-level SConstruct file, or place a subsidiary SConscript
file in intervening directories, or use some mix of the two schemes, is up to you and the needs of your software.

14.2. Path Names Are Relative to the
SConscript Directory
Subsidiary SConscript files make it easy to create a build hierarchy because all of the file and directory names in a
subsidiary SConscript files are interpreted relative to the directory in which that SConscript file lives. Typically,
this allows the SConscript file containing the instructions to build a target file to live in the same directory as the
source files from which the target will be built, making it easy to update how the software is built whenever files are
added or deleted (or other changes are made). It also tends to keep scripts more readable as they don't need to be filled
with complex paths.

For example, suppose we want to build two programs prog1 and prog2 in two separate directories with the same
names as the programs. One typical way to do this would be with a top-level SConstruct file like this:

SConscript(['prog1/SConscript', 'prog2/SConscript'])

And subsidiary SConscript files that look like this:

env = Environment()
env.Program('prog1', ['main.c', 'foo1.c', 'foo2.c'])

And this:

env = Environment()
env.Program('prog2', ['main.c', 'bar1.c', 'bar2.c'])

Then, when we run SCons in the top-level directory, our build looks like:

% scons -Q
cc -o prog1/foo1.o -c prog1/foo1.c
cc -o prog1/foo2.o -c prog1/foo2.c
cc -o prog1/main.o -c prog1/main.c
cc -o prog1/prog1 prog1/main.o prog1/foo1.o prog1/foo2.o
cc -o prog2/bar1.o -c prog2/bar1.c
cc -o prog2/bar2.o -c prog2/bar2.c
cc -o prog2/main.o -c prog2/main.c
cc -o prog2/prog2 prog2/main.o prog2/bar1.o prog2/bar2.o

Notice the following: First, you can have files with the same names in multiple directories, like main.c in the above
example. Second, when building, SCons stays in the top-level directory (where the SConstruct file lives) and issues
commands that use the path names from the top-level directory to the target and source files within the hierarchy. This
works because SCons reads all the SConscript files in one pass, interpreting each in its local context, building up a tree
of information, before starting to execute the needed builds in a second pass. This is quite different than some other
build tools which implement a heirarcical build by recursing.

Top-Relative Path Names in Subsidiary SConscript
Files

105

14.3. Top-Relative Path Names in Subsidiary
SConscript Files
If you need to use a file from another directory, it's sometimes more convenient to specify the path to a file in another
directory from the top-level SConstruct directory, even when you're using that file in a subsidiary SConscript
file in a subdirectory. You can tell SCons to interpret a path name as relative to the top-level SConstruct directory,
not the local directory of the SConscript file, by prepending a # (hash mark) in front of the path name:

env = Environment()
env.Program('prog', ['main.c', '#lib/foo1.c', 'foo2.c'])

In this example, the lib directory is directly underneath the top-level SConstruct directory. If the above
SConscript file is in a subdirectory named src/prog, the output would look like:

% scons -Q
cc -o lib/foo1.o -c lib/foo1.c
cc -o src/prog/foo2.o -c src/prog/foo2.c
cc -o src/prog/main.o -c src/prog/main.c
cc -o src/prog/prog src/prog/main.o lib/foo1.o src/prog/foo2.o

(Notice that the lib/foo1.o object file is built in the same directory as its source file. See Chapter 15, Separating
Source and Build Trees: Variant Directories, below, for information about how to build the object file in a different
subdirectory.)

A couple of notes on top-relative paths:

1. SCons doesn't care whether you add a slash after the #. Some people consider '#/lib/foo1.c' more readable
than '#lib/foo1.c', but they're functionally equivalent.

2. The top-relative syntax is only evaluated by SCons, the Python language itself does not understand about it. This
becomes immediately obvious if you like to use print for debugging, or write a Python function that wants to
evaluate a path. You can force SCons to evaluate a top-relative path and produce a string that can be used by Python
code by creating a Node object from it:

path = "#/include"

print("path =", path)
print("force-interpreted path =", Entry(path))

Which shows:

% scons -Q
path = #/include
force-interpreted path = include
scons: `.' is up to date.

14.4. Absolute Path Names
Of course, you can always specify an absolute path name for a file--for example:

Sharing Environments (and Other Variables) Between
SConscript Files

106

env = Environment()
env.Program('prog', ['main.c', '/usr/joe/lib/foo1.c', 'foo2.c'])

Which, when executed, would yield:

% scons -Q
cc -o src/prog/foo2.o -c src/prog/foo2.c
cc -o src/prog/main.o -c src/prog/main.c
cc -o /usr/joe/lib/foo1.o -c /usr/joe/lib/foo1.c
cc -o src/prog/prog src/prog/main.o /usr/joe/lib/foo1.o src/prog/foo2.o

(As was the case with top-relative path names, notice that the /usr/joe/lib/foo1.o object file is built in the
same directory as its source file. See Chapter 15, Separating Source and Build Trees: Variant Directories, below, for
information about how to build the object file in a different subdirectory.)

14.5. Sharing Environments (and Other
Variables) Between SConscript Files
In the previous example, each of the subsidiary SConscript files created its own construction environment by calling
Environment separately. This obviously works fine, but if each program must be built with the same construction
variables, it's cumbersome and error-prone to initialize separate construction environments in the same way over and
over in each subsidiary SConscript file.

SCons supports the ability to export variables from an SConscript file so they can be imported by other
SConscript files, thus allowing you to share common initialized values throughout your build hierarchy.

14.5.1. Exporting Variables
There are two ways to export a variable from an SConscript file. The first way is to call the Export function.
Export is pretty flexible - in the simplest form, you pass it a string that represents the name of the variable, and
Export stores that with its value:

env = Environment()
Export('env')

You may export more than one variable name at a time:

env = Environment()
debug = ARGUMENTS['debug']
Export('env', 'debug')

Because a Python identifier cannot contain spaces, Export assumes a string containing spaces is is a shortcut for
multiple variable names to export and splits it up for you:

env = Environment()
debug = ARGUMENTS['debug']

Importing Variables

107

Export('env debug')

You can also pass Export a dictionary of values. This form allows the opportunity to export a variable from the
current scope under a different name - in this example, the value of foo is exported under the name "bar":

env = Environment()
foo = "FOO"
args = {"env": env, "bar": foo}
Export(args)

Export will also accept arguments in keyword style. This form adds the ability to create exported variables that have
not actually been set locally in the SConscript file. When used this way, the key is the intended variable name, not a
string representation as with the other forms:

Export(MODE="DEBUG", TARGET="arm")

The styles can be mixed, though Python function calling syntax requires all non-keyword arguments to precede any
keyword arguments in the call.

The Export function adds the variables to a global location from which other SConscript files can import. Calls
to Export are cumulative. When you call Export you are actually updating a Python dictionary, so it is fine to
export a variable you have already exported, but when doing so, the previous value is lost.

The other way to export is you can specify a list of variables as a second argument to the SConscript function call:

SConscript('src/SConscript', 'env')

Or (preferably, for readability) using the exports keyword argument:

SConscript('src/SConscript', exports='env')

These calls export the specified variables to only the listed SConscript file(s). You may specify more than one
SConscript file in a list:

SConscript(['src1/SConscript', 'src2/SConscript'], exports='env')

This is functionally equivalent to calling the SConscript function multiple times with the same exports argument,
one per SConscript file.

14.5.2. Importing Variables
Once a variable has been exported from a calling SConscript file, it may be used in other SConscript files by
calling the Import function:

Returning Values From an SConscript File

108

Import('env')
env.Program('prog', ['prog.c'])

The Import call makes the previously defined env variable available to the SConscript file. Assuming env is a
construction environment, after import it can be used to build programs, libraries, etc. The use case of passing around
a construction environment is extremely common in larger scons builds.

Like the Export function, the Import function can be called with multiple variable names:

Import('env', 'debug')
env = env.Clone(DEBUG=debug)
env.Program('prog', ['prog.c'])

In this example, we pull in the common construction environment env, and use the value of the debug variable to
make a modified copy by passing that to a Clone call.

The Import function will (like Export) split a string containing white-space into separate variable names:

Import('env debug')
env = env.Clone(DEBUG=debug)
env.Program('prog', ['prog.c'])

Import prefers a local definition to a global one, so that if there is a global export of foo, and the calling SConscript
has exported foo to this SConscript, the import will find the foo exported to this SConscript.

Lastly, as a special case, you may import all of the variables that have been exported by supplying an asterisk to the
Import function:

Import('*')
env = env.Clone(DEBUG=debug)
env.Program('prog', ['prog.c'])

If you're dealing with a lot of SConscript files, this can be a lot simpler than keeping arbitrary lists of imported
variables up to date in each file.

14.5.3. Returning Values From an SConscript File
Sometimes, you would like to be able to use information from a subsidiary SConscript file in some way. For
example, suppose that you want to create one library from object files built by several subsidiary SConscript files.
You can do this by using the Return function to return values from the subsidiary SConscript files to the calling
file. Like Import and Export, Return takes a string representation of the variable name, not the variable name
itself.

If, for example, we have two subdirectories foo and bar that should each contribute an object file to a library, what
we'd like to be able to do is collect the object files from the subsidiary SConscript calls like this:

env = Environment()
Export('env')

Returning Values From an SConscript File

109

objs = []
for subdir in ['foo', 'bar']:
 o = SConscript('%s/SConscript' % subdir)
 objs.append(o)
env.Library('prog', objs)

We can do this by using the Return function in the foo/SConscript file like this:

Import('env')
obj = env.Object('foo.c')
Return('obj')

(The corresponding bar/SConscript file should be pretty obvious.) Then when we run SCons, the object files
from the subsidiary subdirectories are all correctly archived in the desired library:

% scons -Q
cc -o bar/bar.o -c bar/bar.c
cc -o foo/foo.o -c foo/foo.c
ar rc libprog.a foo/foo.o bar/bar.o
ranlib libprog.a

15 Separating Source and
Build Trees: Variant Directories

It is often useful to keep built files completely separate from the source files. Two main benefits are the ability to have
different configurations simultaneously without build conflicts, and being version-control friendly.

Consider if you have a project to build an embedded software system for a variety of different controller hardware.
The system is able to share a lot of code, so it makes sense to use a common source tree, but certain build options
in the source code and header files differ. For a regular in-place build, the build outputs go in the same place as the
source code. If you build Controller A first, followed by Controller B, on the Controller B build everything that uses
different build options has to be rebuilt since those objects will be different (the build lines, including preprocessor
defines, are part of SCons's out-of-date calculation for this reason). If you go back and build for Controller A again,
things have to be rebuilt again for the same reason. However, if you can separate the locations of the output files, so
each controller has its own location for build outputs, this problem can be avoided.

Having a separated build tree also helps you keep your source tree clean - there is less chance of accidentally checking
in build products to version control that were not intended to be checked in. You can add a separated build directory
to your version control system's list of items not to track. You can even remove the whole build tree with a single
command without risking removing any of the source code.

The key to making this separation work is the ability to do out-of-tree builds: building under a separate root than the
sources being built. You set up out of tree builds by establishing what SCons calls a variant directory, a place where
you can build a single variant of your software (of course you can define more than one of these if you need to).
Since SCons tracks targets by their path, it is able to distinguish build products like build/A/network.obj of
the Controller A build from build/B/network.obj of the Controller B build, thus avoiding conflicts.

SCons provides two ways to establish variant directories, one through the SConscript function that we have already
seen, and the second through a more flexible VariantDir function.

The variant directory mechanism does support doing multiple builds in one invocation of SCons, but the remainder
of this chapter will focus on setting up a single build. You can combine these techniques with ones from the previous
chapter and elsewhere in this Guide to set up more complex scenarios.

Note

The VariantDir function used to be called BuildDir, a name which was changed because it turned out
to be confusing: the SCons functionality differs from a familiar model of a "build directory" implemented
by certain other build systems like GNU Autotools. You might still find references to the old name on the
Internet in postings about SCons, but it no longer works.

Specifying a Variant Directory Tree as Part of an
SConscript Call

111

15.1. Specifying a Variant Directory Tree as
Part of an SConscript Call
The most straightforward way to establish a variant directory tree relies on the fact that the usual way to set up a
build hierarchy is to have an SConscript file in the source directory. If you pass a variant_dir argument to
the SConscript function call:

SConscript('src/SConscript', variant_dir='build')

SCons will then build all of the files in the build directory:

% ls src
SConscript hello.c
% scons -Q
cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
% ls src
SConscript hello.c
% ls build
SConscript hello hello.c hello.o

No files were built in src: the object file build/hello.o and the executable file build/hello were built in
the build directory, as expected. But notice that even though our hello.c file actually lives in the src directory,
SCons has compiled a build/hello.c file to create the object file, and that file is now seen in build.

You can ask SCons to show the dependency tree to illustrate a bit more:

% scons -Q --tree=prune
cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
+-.
 +-SConstruct
 +-build
 | +-build/SConscript
 | +-build/hello
 | | +-build/hello.o
 | | +-build/hello.c
 | +-build/hello.c
 | +-[build/hello.o]
 +-src
 +-src/SConscript
 +-src/hello.c

What's happened is that SCons has duplicated the hello.c file from the src directory to the build directory, and
built the program from there (it also duplicated SConscript). The next section explains why SCons does this.

The nice thing about the SConscript approach is it is almost invisible to you: this build looks just like an ordinary
in-place build except for the extra variant_dir argument in the SConscript call. SCons handles all the path
adjustments for the out of tree build directory while it processes that SConscript file.

Why SCons Duplicates Source Files in a Variant
Directory Tree

112

15.2. Why SCons Duplicates Source Files in a
Variant Directory Tree
When you set up a variant directory SCons conceptually behaves as if you requested a build in that directory. As noted
in the previous chapter, all builds actually happen from the top level directory, but as an aid to understanding how
SCons operates, think of it as build in place in the variant directory, not build in source but send build artifacts to
the variant directory. It turns out in place builds are easier to get right than out of tree builds - so by default SCons
simulates an in place build by making the variant directory look just like the source directory. The most straightforward
way to do that is by making copies of the files needed for the build.

The most direct reason to duplicate source files in variant directories is simply that some tools (mostly older versions)
are written to only build their output files in the same directory as the source files - such tools often don't have any
option to specify the output file, and the tool just uses a predefined output file name, or uses a derived variant of the
source file name, dropping the result in the same directory. In this case, the choices are either to build the output file
in the source directory and move it to the variant directory, or to duplicate the source files in the variant directory.

Additionally, relative references between files can cause problems which are resolved by just duplicating the hierarchy
of source files into the variant directory. You can see this at work in use of the C preprocessor #include mechanism
with double quotes, not angle brackets:

#include "file.h"

The de facto standard behavior for most C compilers in this case is to first look in the same directory as the source file
that contains the #include line, then to look in the directories in the preprocessor search path. Add to this that the
SCons implementation of support for code repositories (described below) means not all of the files will be found in the
same directory hierarchy, and the simplest way to make sure that the right include file is found is to duplicate the source
files into the variant directory, which provides a correct build regardless of the original location(s) of the source files.

Although source-file duplication guarantees a correct build even in these edge cases, it can usually be safely disabled.
The next section describes how you can disable the duplication of source files in the variant directory.

15.3. Telling SCons to Not Duplicate Source
Files in the Variant Directory Tree
In most cases and with most tool sets, SCons can use sources directly from the source directory without duplicating
them into the variant directory before building, and everything will work just fine. You can disable the default SCons
duplication behavior by specifying duplicate=False when you call the SConscript function:

SConscript('src/SConscript', variant_dir='build', duplicate=False)

When this flag is specified, the results of a build look more like the mental model people may have from other build
systems - that is, the output files end up in the variant directory while the source files do not.

% ls src
SConscript
hello.c

The VariantDir Function

113

% scons -Q
cc -c src/hello.c -o build/hello.o
cc -o build/hello build/hello.o
% ls build
hello
hello.o

If disabling duplication causes any problems, just return to the more cautious approach by letting SCons go back to
duplicating files.

15.4. The VariantDir Function
You can also use the VariantDir function to establish that target files should be built in a separate directory tree
from the source files:

VariantDir('build', 'src')
env = Environment()
env.Program('build/hello.c')

When using this form, you have to tell SCons that sources and targets are in the variant directory, and those references
will trigger the remapping, necessary file copying, etc. for an already established variant directory. Here is the same
example in a more spelled out form to show this more clearly:

VariantDir('build', 'src')
env = Environment()
env.Program(target='build/hello', source=['build/hello.c'])

When using the VariantDir function directly, SCons still duplicates the source files in the variant directory by
default:

% ls src
hello.c
% scons -Q
cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
% ls build
hello hello.c hello.o

You can specify the same duplicate=False argument that you can specify for an SConscript call:

VariantDir('build', 'src', duplicate=False)
env = Environment()
env.Program('build/hello.c')

In which case SCons will disable duplication of the source files:

% ls src
hello.c

Using VariantDir With an SConscript File

114

% scons -Q
cc -o build/hello.o -c src/hello.c
cc -o build/hello build/hello.o
% ls build
hello hello.o

15.5. Using VariantDir With an SConscript
File
Even when using the VariantDir function, it is more natural to use it with a subsidiary SConscript file, because
then you don't have to adjust your individual build instructions to use the variant directory path. For example, if the
src/SConscript looks like this:

env = Environment()
env.Program('hello.c')

Then our SConstruct file could look like:

VariantDir('build', 'src')
SConscript('build/SConscript')

Yielding the following output:

% ls src
SConscript hello.c
% scons -Q
cc -o build/hello.o -c build/hello.c
cc -o build/hello build/hello.o
% ls build
SConscript hello hello.c hello.o

This is completely equivalent to the use of SConscript with the variant_dir argument from earlier in this
chapter, but did require callng the SConscript using the already established variant directory path to trigger that
behavior. If you call SConscript('src/SConscript') you would get a normal in-place build in src.

15.6. Using Glob with VariantDir
The Glob file name pattern matching function works just as usual when using VariantDir. For example, if the
src/SConscript looks like this:

env = Environment()
env.Program('hello', Glob('*.c'))

Then with the same SConstruct file as in the previous section, and source files f1.c and f2.c in src, we would
see the following output:

% ls src

Variant Build Examples

115

SConscript f1.c f2.c f2.h
% scons -Q
cc -o build/f1.o -c build/f1.c
cc -o build/f2.o -c build/f2.c
cc -o build/hello build/f1.o build/f2.o
% ls build
SConscript f1.c f1.o f2.c f2.h f2.o hello

The Glob function returns Nodes in the build/ tree, as you'd expect.

15.7. Variant Build Examples
The variant_dir keyword argument of the SConscript function provides everything we need to show how easy
it is to create variant builds using SCons. Suppose, for example, that we want to build a program for both Windows
and Linux platforms, but that we want to build it in directory on a network share with separate side-by-side build
directories for the Windows and Linux versions of the program. We have to do a little bit of work to construct paths,
to make sure unwanted location dependencies don't creep in. The top-relative path reference can be useful here. To
avoid writing conditional code based on platform, we can build the variant_dir path dynamically:

platform = ARGUMENTS.get('OS', Platform())

include = "#export/$PLATFORM/include"
lib = "#export/$PLATFORM/lib"
bin = "#export/$PLATFORM/bin"

env = Environment(
 PLATFORM=platform,
 BINDIR=bin,
 INCDIR=include,
 LIBDIR=lib,
 CPPPATH=[include],
 LIBPATH=[lib],
 LIBS='world',
)

Export('env')

env.SConscript('src/SConscript', variant_dir='build/$PLATFORM')

This SConstruct file, when run on a Linux system, yields:

% scons -Q OS=linux
Install file: "build/linux/world/world.h" as "export/linux/include/world.h"
cc -o build/linux/hello/hello.o -c -Iexport/linux/include build/linux/hello/hello.c
cc -o build/linux/world/world.o -c -Iexport/linux/include build/linux/world/world.c
ar rc build/linux/world/libworld.a build/linux/world/world.o
ranlib build/linux/world/libworld.a
Install file: "build/linux/world/libworld.a" as "export/linux/lib/libworld.a"
cc -o build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld
Install file: "build/linux/hello/hello" as "export/linux/bin/hello"

The same SConstruct file on Windows would build:

Variant Build Examples

116

C:\>scons -Q OS=windows
Install file: "build/windows/world/world.h" as "export/windows/include/world.h"
cl /Fobuild\windows\hello\hello.obj /c build\windows\hello\hello.c /nologo /Iexport\windows\include
cl /Fobuild\windows\world\world.obj /c build\windows\world\world.c /nologo /Iexport\windows\include
lib /nologo /OUT:build\windows\world\world.lib build\windows\world\world.obj
Install file: "build/windows/world/world.lib" as "export/windows/lib/world.lib"
link /nologo /OUT:build\windows\hello\hello.exe /LIBPATH:export\windows\lib world.lib build\windows\hello\hello.obj
embedManifestExeCheck(target, source, env)
Install file: "build/windows/hello/hello.exe" as "export/windows/bin/hello.exe"

In order to build several variants at once when using the variant_dir argument to SConscript, you can call
the function repeatedely - this example does so in a loop. Note that the SConscript trick of passing a list of script
files, or a list of source directories, does not work with variant_dir, SCons allows only a single SConscript
to be given if variant_dir is used.

env = Environment(OS=ARGUMENTS.get('OS'))
for os in ['newell', 'post']:
 SConscript('src/SConscript', variant_dir='build/' + os)

16 Building From Code
Repositories

Often, a software project will have one or more central repositories, directory trees that contain source code, or derived
files, or both. You can eliminate additional unnecessary rebuilds of files by having SCons use files from one or more
code repositories to build files in your local build tree.

16.1. The Repository Method
It's often useful to allow multiple programmers working on a project to build software from source files and/or derived
files that are stored in a centrally-accessible repository, a directory copy of the source code tree. (Note that this is not
the sort of repository maintained by a source code management system like BitKeeper, CVS, or Subversion.) You use
the Repository method to tell SCons to search one or more central code repositories (in order) for any source files
and derived files that are not present in the local build tree:

env = Environment()
env.Program('hello.c')
Repository('/usr/repository1', '/usr/repository2')

Multiple calls to the Repository method will simply add repositories to the global list that SCons maintains, with the
exception that SCons will automatically eliminate the current directory and any non-existent directories from the list.

16.2. Finding source files in repositories
The above example specifies that SCons will first search for files under the /usr/repository1 tree and next
under the /usr/repository2 tree. SCons expects that any files it searches for will be found in the same position
relative to the top-level directory. In the above example, if the hello.c file is not found in the local build tree, SCons
will search first for a /usr/repository1/hello.c file and then for a /usr/repository2/hello.c file
to use in its place.

So given the SConstruct file above, if the hello.c file exists in the local build directory, SCons will rebuild the
hello program as normal:

% scons -Q
cc -o hello.o -c hello.c

Finding #include files in repositories

118

cc -o hello hello.o

If, however, there is no local hello.c file, but one exists in /usr/repository1, SCons will recompile the
hello program from the source file it finds in the repository:

% scons -Q
cc -o hello.o -c /usr/repository1/hello.c
cc -o hello hello.o

And similarly, if there is no local hello.c file and no /usr/repository1/hello.c, but one exists in /usr/
repository2:

% scons -Q
cc -o hello.o -c /usr/repository2/hello.c
cc -o hello hello.o

The Glob function understands about repositories, and will use the same matching algorithm as described for
explicitly-listed sources.

16.3. Finding #include files in repositories
We've already seen that SCons will scan the contents of a source file for #include file names and realize that targets
built from that source file also depend on the #include file(s). For each directory in the $CPPPATH list, SCons
will actually search the corresponding directories in any repository trees and establish the correct dependencies on any
#include files that it finds in repository directory.

Unless the C compiler also knows about these directories in the repository trees, though, it will be unable to find the
#include files. If, for example, the hello.c file in our previous example includes the hello.h in its current
directory, and the hello.h only exists in the repository:

% scons -Q
cc -o hello.o -c hello.c
hello.c:1: hello.h: No such file or directory

In order to inform the C compiler about the repositories, SCons will add appropriate -I flags to the compilation
commands for each directory in the $CPPPATH list. So if we add the current directory to the construction environment
$CPPPATH like so:

env = Environment(CPPPATH = ['.'])
env.Program('hello.c')
Repository('/usr/repository1')

Then re-executing SCons yields:

% scons -Q
cc -o hello.o -c -I. -I/usr/repository1 hello.c
cc -o hello hello.o

The order of the -I options replicates, for the C preprocessor, the same repository-directory search path that SCons
uses for its own dependency analysis. If there are multiple repositories and multiple $CPPPATH directories, SCons

Limitations on #include files in repositories

119

will add the repository directories to the beginning of each $CPPPATH directory, rapidly multiplying the number of
-I flags. If, for example, the $CPPPATH contains three directories (and shorter repository path names!):

env = Environment(CPPPATH = ['dir1', 'dir2', 'dir3'])
env.Program('hello.c')
Repository('/r1', '/r2')

Then we'll end up with nine -I options on the command line, three (for each of the $CPPPATH directories) times
three (for the local directory plus the two repositories):

% scons -Q
cc -o hello.o -c -Idir1 -I/r1/dir1 -I/r2/dir1 -Idir2 -I/r1/dir2 -I/r2/dir2 -Idir3 -I/r1/dir3 -I/r2/dir3 hello.c
cc -o hello hello.o

16.3.1. Limitations on #include files in repositories
SCons relies on the C compiler's -I options to control the order in which the preprocessor will search the repository
directories for #include files. This causes a problem, however, with how the C preprocessor handles #include
lines with the file name included in double-quotes.

As we've seen, SCons will compile the hello.c file from the repository if it doesn't exist in the local directory. If,
however, the hello.c file in the repository contains a #include line with the file name in double quotes:

#include "hello.h"
int
main(int argc, char *argv[])
{
 printf(HELLO_MESSAGE);
 return (0);
}

Then the C preprocessor will always use a hello.h file from the repository directory first, even if there is a hello.h
file in the local directory, despite the fact that the command line specifies -I as the first option:

% scons -Q
cc -o hello.o -c -I. -I/usr/repository1 /usr/repository1/hello.c
cc -o hello hello.o

This behavior of the C preprocessor--always search for a #include file in double-quotes first in the same directory
as the source file, and only then search the -I--can not, in general, be changed. In other words, it's a limitation that
must be lived with if you want to use code repositories in this way. There are three ways you can possibly work around
this C preprocessor behavior:

1. Some modern versions of C compilers do have an option to disable or control this behavior. If so, add that option
to $CFLAGS (or $CXXFLAGS or both) in your construction environment(s). Make sure the option is used for all
construction environments that use C preprocessing!

2. Change all occurrences of #include "file.h" to #include <file.h>. Use of #include with angle
brackets does not have the same behavior--the -I directories are searched first for #include files--which gives
SCons direct control over the list of directories the C preprocessor will search.

Finding the SConstruct file in repositories

120

3. Require that everyone working with compilation from repositories check out and work on entire directories of files,
not individual files. (If you use local wrapper scripts around your source code control system's command, you could
add logic to enforce this restriction there.

16.4. Finding the SConstruct file in
repositories
SCons will also search in repositories for the SConstruct file and any specified SConscript files. This poses
a problem, though: how can SCons search a repository tree for an SConstruct file if the SConstruct file itself
contains the information about the pathname of the repository? To solve this problem, SCons allows you to specify
repository directories on the command line using the -Y option:

% scons -Q -Y /usr/repository1 -Y /usr/repository2

When looking for source or derived files, SCons will first search the repositories specified on the command line, and
then search the repositories specified in the SConstruct or SConscript files.

16.5. Finding derived files in repositories
If a repository contains not only source files, but also derived files (such as object files, libraries, or executables),
SCons will perform its normal MD5 signature calculation to decide if a derived file in a repository is up-to-date, or
the derived file must be rebuilt in the local build directory. For the SCons signature calculation to work correctly, a
repository tree must contain the .sconsign files that SCons uses to keep track of signature information.

Usually, this would be done by a build integrator who would run SCons in the repository to create all of its derived
files and .sconsign files, or who would run SCons in a separate build directory and copy the resulting tree to the
desired repository:

% cd /usr/repository1
% scons -Q
cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o hello.o -c hello.c
cc -o hello hello.o file1.o file2.o

(Note that this is safe even if the SConstruct file lists /usr/repository1 as a repository, because SCons will
remove the current build directory from its repository list for that invocation.)

Now, with the repository populated, we only need to create the one local source file we're interested in working with
at the moment, and use the -Y option to tell SCons to fetch any other files it needs from the repository:

% cd $HOME/build
% edit hello.c
% scons -Q -Y /usr/repository1
cc -c -o hello.o hello.c
cc -o hello hello.o /usr/repository1/file1.o /usr/repository1/file2.o

Notice that SCons realizes that it does not need to rebuild local copies file1.o and file2.o files, but instead uses
the already-compiled files from the repository.

Guaranteeing local copies of files

121

16.6. Guaranteeing local copies of files
If the repository tree contains the complete results of a build, and we try to build from the repository without any files
in our local tree, something moderately surprising happens:

% mkdir $HOME/build2
% cd $HOME/build2
% scons -Q -Y /usr/all/repository hello
scons: `hello' is up-to-date.

Why does SCons say that the hello program is up-to-date when there is no hello program in the local build
directory? Because the repository (not the local directory) contains the up-to-date hello program, and SCons correctly
determines that nothing needs to be done to rebuild that up-to-date copy of the file.

There are, however, many times when you want to ensure that a local copy of a file always exists. A packaging or
testing script, for example, may assume that certain generated files exist locally. To tell SCons to make a copy of any
up-to-date repository file in the local build directory, use the Local function:

env = Environment()
hello = env.Program('hello.c')
Local(hello)

If we then run the same command, SCons will make a local copy of the program from the repository copy, and tell
you that it is doing so:

% scons -Y /usr/all/repository hello
Local copy of hello from /usr/all/repository/hello
scons: `hello' is up-to-date.

(Notice that, because the act of making the local copy is not considered a "build" of the hello file, SCons still reports
that it is up-to-date.)

17 Extending SCons: Writing
Your Own Builders

Although SCons provides many useful methods for building common software products (programs, libraries,
documents, etc.), you frequently want to be able to build some other type of file not supported directly by SCons.
Fortunately, SCons makes it very easy to define your own Builder objects for any custom file types you want to build.
(In fact, the SCons interfaces for creating Builder objects are flexible enough and easy enough to use that all of the the
SCons built-in Builder objects are created using the mechanisms described in this section.)

17.1. Writing Builders That Execute External
Commands
The simplest Builder to create is one that executes an external command. For example, if we want to build an output file
by running the contents of the input file through a command named foobuild, creating that Builder might look like:

bld = Builder(action='foobuild < $SOURCE > $TARGET')

All the above line does is create a free-standing Builder object. The next section will show how to actually use it.

17.2. Attaching a Builder to a Construction
Environment
A Builder object isn't useful until it's attached to a construction environment so that we can call it to arrange for files to
be built. This is done through the $BUILDERS construction variable in an environment. The $BUILDERS variable is
a Python dictionary that maps the names by which you want to call various Builder objects to the objects themselves.
For example, if we want to call the Builder we just defined by the name Foo, our SConstruct file might look like:

bld = Builder(action='foobuild < $SOURCE > $TARGET')
env = Environment(BUILDERS={'Foo': bld})

With the Builder attached to our construction environment with the name Foo, we can now actually call it like so:

Letting SCons Handle The File Suffixes

123

env.Foo('file.foo', 'file.input')

Then when we run SCons it looks like:

% scons -Q
foobuild < file.input > file.foo

Note, however, that the default $BUILDERS variable in a construction environment comes with a default set of Builder
objects already defined: Program, Library, etc. And when we explicitly set the $BUILDERS variable when we
create the construction environment, the default Builders are no longer part of the environment:

bld = Builder(action='foobuild < $SOURCE > $TARGET')
env = Environment(BUILDERS={'Foo': bld})
env.Foo('file.foo', 'file.input')
env.Program('hello.c')

% scons -Q
AttributeError: 'SConsEnvironment' object has no attribute 'Program':
 File "/home/my/project/SConstruct", line 7:
 env.Program('hello.c')

To be able to use both our own defined Builder objects and the default Builder objects in the same construction
environment, you can either add to the $BUILDERS variable using the Append function:

env = Environment()
bld = Builder(action='foobuild < $SOURCE > $TARGET')
env.Append(BUILDERS={'Foo': bld})
env.Foo('file.foo', 'file.input')
env.Program('hello.c')

Or you can explicitly set the appropriately-named key in the $BUILDERS dictionary:

env = Environment()
bld = Builder(action='foobuild < $SOURCE > $TARGET')
env['BUILDERS']['Foo'] = bld
env.Foo('file.foo', 'file.input')
env.Program('hello.c')

Either way, the same construction environment can then use both the newly-defined Foo Builder and the default
Program Builder:

% scons -Q
foobuild < file.input > file.foo
cc -o hello.o -c hello.c
cc -o hello hello.o

17.3. Letting SCons Handle The File Suffixes
By supplying additional information when you create a Builder, you can let SCons add appropriate file suffixes to the
target and/or the source file. For example, rather than having to specify explicitly that you want the Foo Builder to

Builders That Execute Python Functions

124

build the file.foo target file from the file.input source file, you can give the .foo and .input suffixes to
the Builder, making for more compact and readable calls to the Foo Builder:

bld = Builder(
 action='foobuild < $SOURCE > $TARGET',
 suffix='.foo',
 src_suffix='.input',
)
env = Environment(BUILDERS={'Foo': bld})
env.Foo('file1')
env.Foo('file2')

% scons -Q
foobuild < file1.input > file1.foo
foobuild < file2.input > file2.foo

You can also supply a prefix keyword argument if it's appropriate to have SCons append a prefix to the beginning
of target file names.

17.4. Builders That Execute Python Functions
In SCons, you don't have to call an external command to build a file. You can, instead, define a Python function that
a Builder object can invoke to build your target file (or files). Such a builder function definition looks like:

def build_function(target, source, env):
 # Code to build "target" from "source"
 return None

The arguments of a builder function are:

target
A list of Node objects representing the target or targets to be built by this function. The file names of these target(s)
may be extracted using the Python str function.

source
A list of Node objects representing the sources to be used by this function to build the targets. The file names of
these source(s) may be extracted using the Python str function.

env
The construction environment used for building the target(s). The function may use any of the environment's
construction variables in any way to affect how it builds the targets.

The function will be constructed as a SCons FunctionAction and must return a 0 or None value if the target(s) are built
successfully. The function may raise an exception or return any non-zero value to indicate that the build is unsuccessful.
For more information on Actions see the Action Objects section of the man page.

Once you've defined the Python function that will build your target file, defining a Builder object for it is as simple as
specifying the name of the function, instead of an external command, as the Builder's action argument:

def build_function(target, source, env):

Builders That Create Actions Using a Generator

125

 # Code to build "target" from "source"
 return None

bld = Builder(
 action=build_function,
 suffix='.foo',
 src_suffix='.input',
)
env = Environment(BUILDERS={'Foo': bld})
env.Foo('file')

And notice that the output changes slightly, reflecting the fact that a Python function, not an external command, is
now called to build the target file:

% scons -Q
build_function(["file.foo"], ["file.input"])

17.5. Builders That Create Actions Using a
Generator
SCons Builder objects can create an action "on the fly" by using a function called a Generator. (Note: this is not
the same thing as a Python generator function described in PEP 255 [https://www.python.org/dev/peps/pep-0255/])
This provides a great deal of flexibility to construct just the right list of commands to build your target. A generator
looks like:

def generate_actions(source, target, env, for_signature):
 return 'foobuild < %s > %s' % (target[0], source[0])

The arguments of a generator are:

source
A list of Node objects representing the sources to be built by the command or other action generated by this
function. The file names of these source(s) may be extracted using the Python str function.

target
A list of Node objects representing the target or targets to be built by the command or other action generated by
this function. The file names of these target(s) may be extracted using the Python str function.

env
The construction environment used for building the target(s). The generator may use any of the environment's
construction variables in any way to determine what command or other action to return.

for_signature
A flag that specifies whether the generator is being called to contribute to a build signature, as opposed to actually
executing the command.

The generator must return a command string or other action that will be used to build the specified target(s) from the
specified source(s).

Once you've defined a generator, you create a Builder to use it by specifying the generator keyword argument
instead of action.

https://www.python.org/dev/peps/pep-0255/
https://www.python.org/dev/peps/pep-0255/

Builders That Modify the Target or Source Lists Using an
Emitter

126

def generate_actions(source, target, env, for_signature):
 return 'foobuild < %s > %s' % (source[0], target[0])

bld = Builder(
 generator=generate_actions,
 suffix='.foo',
 src_suffix='.input',
)
env = Environment(BUILDERS={'Foo': bld})
env.Foo('file')

% scons -Q
foobuild < file.input > file.foo

Note that it's illegal to specify both an action and a generator for a Builder.

17.6. Builders That Modify the Target or Source
Lists Using an Emitter
SCons supports the ability for a Builder to modify the lists of target(s) from the specified source(s). You do this by
defining an emitter function that takes as its arguments the list of the targets passed to the builder, the list of the sources
passed to the builder, and the construction environment. The emitter function should return the modified lists of targets
that should be built and sources from which the targets will be built.

For example, suppose you want to define a Builder that always calls a foobuild program, and you want to automatically
add a new target file named new_target and a new source file named new_source whenever it's called. The
SConstruct file might look like this:

def modify_targets(target, source, env):
 target.append('new_target')
 source.append('new_source')
 return target, source

bld = Builder(
 action='foobuild $TARGETS - $SOURCES',
 suffix='.foo',
 src_suffix='.input',
 emitter=modify_targets,
)
env = Environment(BUILDERS={'Foo': bld})
env.Foo('file')

And would yield the following output:

% scons -Q
foobuild file.foo new_target - file.input new_source

One very flexible thing that you can do is use a construction variable to specify different emitter functions for different
construction environments. To do this, specify a string containing a construction variable expansion as the emitter

Modifying a Builder by adding an Emitter

127

when you call the Builder function, and set that construction variable to the desired emitter function in different
construction environments:

bld = Builder(
 action='./my_command $SOURCES > $TARGET',
 suffix='.foo',
 src_suffix='.input',
 emitter='$MY_EMITTER',
)

def modify1(target, source, env):
 return target, source + ['modify1.in']

def modify2(target, source, env):
 return target, source + ['modify2.in']

env1 = Environment(BUILDERS={'Foo': bld}, MY_EMITTER=modify1)
env2 = Environment(BUILDERS={'Foo': bld}, MY_EMITTER=modify2)
env1.Foo('file1')
env2.Foo('file2')

In this example, the modify1.in and modify2.in files get added to the source lists of the different commands:

% scons -Q
./my_command file1.input modify1.in > file1.foo
./my_command file2.input modify2.in > file2.foo

17.7. Modifying a Builder by adding an Emitter
Defining an emitter to work with a custom Builder is a powerful concept, but sometimes all you really want is to be
able to use an existing builder but change its concept of what targets are created. In this case, trying to recreate the
logic of an existing Builder to supply a special emitter can be a lot of work. The typical case for this is when you want
to use a compiler flag that causes additional files to be generated. For example the GNU linker accepts an option -
Map which outputs a link map to the file specified by the option's argument. If this option is just supplied to the build,
SCons will not consider the link map file a tracked target, which has various undesirable efffects.

To help with this, SCons provides construction variables which correspond to a few standard builders:
$PROGEMITTER for Program; $LIBEMITTER for Library; $SHLIBEMITTER for SharedLibrary and
$LDMODULEEMITTER for LoadableModule;. Adding an emitter to one of these will cause it to be invoked in
addition to any existing emitter for the corresponding builder.

This example adds map creation as a linker flag, and modifies the standard Program emitter to know that map
generation is a side-effect:

env = Environment()
map_filename = "${TARGET.name}.map"

def map_emitter(target, source, env):
 target.append(map_filename)
 return target, source

Where To Put Your Custom Builders and Tools

128

env.Append(LINKFLAGS="-Wl,-Map={},--cref".format(map_filename))
env.Append(PROGEMITTER=map_emitter)
env.Program('hello.c')

If you run this example, adding an option to tell SCons to dump some information about the dependencies it knows,
it shows the map file option in use, and that SCons indeed knows about the map file, it's not just a silent side effect
of the compiler:

% scons -Q --tree=prune
cc -o hello.o -c hello.c
cc -o hello -Wl,-Map=hello.map,--cref hello.o
+-.
 +-SConstruct
 +-hello
 | +-hello.o
 | +-hello.c
 +-hello.c
 +-hello.map
 | +-[hello.o]
 +-[hello.o]

17.8. Where To Put Your Custom Builders and
Tools
The site_scons directories give you a place to put Python modules and packages that you can import into your
SConscript files (at the top level) add-on tools that can integrate into SCons (in a site_tools subdirectory),
and a site_scons/site_init.py file that gets read before any SConstruct or SConscript file, allowing
you to change SCons's default behavior.

Each system type (Windows, Mac, Linux, etc.) searches a canonical set of directories for site_scons; see the man
page for details. The top-level SConstruct's site_scons dir (that is, the one in the project) is always searched last,
and its dir is placed first in the tool path so it overrides all others.

If you get a tool from somewhere (the SCons wiki or a third party, for instance) and you'd like to use it in your project,
a site_scons dir is the simplest place to put it. Tools come in two flavors; either a Python function that operates
on an Environment or a Python module or package containing two functions, exists() and generate().

A single-function Tool can just be included in your site_scons/site_init.py file where it will be parsed and
made available for use. For instance, you could have a site_scons/site_init.py file like this:

def TOOL_ADD_HEADER(env):
 """A Tool to add a header from $HEADER to the source file"""
 add_header = Builder(
 action=['echo "$HEADER" > $TARGET', 'cat $SOURCE >> $TARGET']
)
 env.Append(BUILDERS={'AddHeader': add_header})
 env['HEADER'] = '' # set default value

and a SConstruct like this:

Where To Put Your Custom Builders and Tools

129

Use TOOL_ADD_HEADER from site_scons/site_init.py
env=Environment(tools=['default', TOOL_ADD_HEADER], HEADER="=====")
env.AddHeader('tgt', 'src')

The TOOL_ADD_HEADER tool method will be called to add the AddHeader tool to the environment.

A more full-fledged tool with exists() and generate() methods can be installed either as a module in the file
site_scons/site_tools/toolname.py or as a package in the directory site_scons/site_tools/
toolname. In the case of using a package, the exists() and generate() are in the file site_scons/
site_tools/toolname/__init__.py. (In all the above case toolname is replaced by the name of the tool.)
Since site_scons/site_tools is automatically added to the head of the tool search path, any tool found there
will be available to all environments. Furthermore, a tool found there will override a built-in tool of the same name,
so if you need to change the behavior of a built-in tool, site_scons gives you the hook you need.

Many people have a collection of utility Python functions they'd like to include in their SConscript files: just put
them in site_scons/my_utils.py or any valid Python module name of your choice. For instance you can do
something like this in site_scons/my_utils.py to add build_id and MakeWorkDir functions:

from SCons.Script import * # for Execute and Mkdir

def build_id():
 """Return a build ID (stub version)"""
 return "100"

def MakeWorkDir(workdir):
 """Create the specified dir immediately"""
 Execute(Mkdir(workdir))

And then in your SConscript or any sub-SConscript anywhere in your build, you can import my_utils and
use it:

import my_utils
print("build_id=" + my_utils.build_id())
my_utils.MakeWorkDir('/tmp/work')

You can put this collection in its own module in a site_scons and import it as in the example, or you can include it
in site_scons/site_init.py, which is automatically imported (unless you disable site directories). Note that
in order to refer to objects in the SCons namespace such as Environment or Mkdir or Execute in any file other
than a SConstruct or SConscript you always need to do

from SCons.Script import *

This is true of modules in site_scons such as site_scons/site_init.py as well.

You can use any of the user- or machine-wide site directories such as ~/.scons/site_scons instead of ./
site_scons, or use the --site-dir option to point to your own directory. site_init.py and site_tools
will be located under that directory. To avoid using a site_scons directory at all, even if it exists, use the --no-
site-dir option.

18 Not Writing a Builder: the
Command Builder

Creating a Builder and attaching it to a construction environment allows for a lot of flexibility when you want to re-
use actions to build multiple files of the same type. This can, however, be cumbersome if you only need to execute one
specific command to build a single file (or group of files). For these situations, SCons supports a Command builder
that arranges for a specific action to be executed to build a specific file or files. This looks a lot like the other builders
(like Program, Object, etc.), but takes as an additional argument the command to be executed to build the file:

env = Environment()
env.Command('foo.out', 'foo.in', "sed 's/x/y/' < $SOURCE > $TARGET")

When executed, SCons runs the specified command, substituting $SOURCE and $TARGET as expected:

% scons -Q
sed 's/x/y/' < foo.in > foo.out

This is often more convenient than creating a Builder object and adding it to the $BUILDERS variable of a construction
environment.

Note that the action you specify to the Command Builder can be any legal SCons Action, such as a Python function:

env = Environment()

def build(target, source, env):
 # Whatever it takes to build
 return None

env.Command('foo.out', 'foo.in', build)

Which executes as follows:

% scons -Q
build(["foo.out"], ["foo.in"])

Note that $SOURCE and $TARGET are expanded in the source and target as well, so you can write:

131

env.Command('${SOURCE.basename}.out', 'foo.in', build)

which does the same thing as the previous example, but allows you to avoid repeating yourself.

It may be helpful to use the action keyword to specify the action, is this makes things more clear to the reader:

env.Command('${SOURCE.basename}.out', 'foo.in', action=build)

The method described in Section 9.2, “Controlling How SCons Prints Build Commands: the $*COMSTR Variables” for
controlling build output works well when used with pre-defined builders which have pre-defined *COMSTR variables
for that purpose, but that is not the case when calling Command, where SCons has no specific knowledge of the action
ahead of time. If the action argument to Command is not already an Action object, it will construct one for you with
suitable defaults, which include a message based on the type of action. However, you can also construct the Action
object yourself to pass to Command, which gives you much more control. Here's an evolution of the example from
above showing this approach:

env = Environment()

def build(target, source, env):
 # Whatever it takes to build
 return None

act = Action(build, cmdstr="Building ${TARGET}")
env.Command('foo.out', 'foo.in', action=act)

Which executes as follows:

% scons -Q
Building foo.out

19 Extending SCons:
Pseudo-Builders and the
AddMethod function

The AddMethod function is used to add a method to an environment. It is typically used to add a "pseudo-builder,"
a function that looks like a Builder but wraps up calls to multiple other Builders or otherwise processes its arguments
before calling one or more Builders.

In the following example, we want to install the program into the standard /usr/bin directory hierarchy, but also
copy it into a local install/bin directory from which a package might be built:

def install_in_bin_dirs(env, source):
 """Install source in both bin dirs"""
 i1 = env.Install("$BIN", source)
 i2 = env.Install("$LOCALBIN", source)
 return [i1[0], i2[0]] # Return a list, like a normal builder

env = Environment(BIN='/usr/bin', LOCALBIN='#install/bin')
env.AddMethod(install_in_bin_dirs, "InstallInBinDirs")
env.InstallInBinDirs(Program('hello.c')) # installs hello in both bin dirs

This produces the following:

% scons -Q /
cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello"
Install file: "hello" as "install/bin/hello"

A pseudo-builder is useful because it gives you more flexibility parsing arguments than you can get with a standard
Builder. The next example shows a pseudo-builder with a named argument that modifies the filename, and a separate
optional argument for a resource file (rather than having the builder figure it out by file extension). This example also
demonstrates using the global AddMethod function to add a method to the global Environment class, so it will be
available in all subsequently created environments.

133

def BuildTestProg(env, testfile, resourcefile="", testdir="tests"):
 """Build the test program.

 Prepends "test_" to src and target and puts the target into testdir.
 If the build is running on Windows, also make use of a resource file,
 if supplied.
 """
 srcfile = f"test_{testfile}.c"
 target = f"{testdir}/test_{testfile}"
 if env['PLATFORM'] == 'win32' and resourcefile:
 resfile = env.RES(resourcefile)
 p = env.Program(target, [srcfile, resfile])
 else:
 p = env.Program(target, srcfile)
 return p

AddMethod(Environment, BuildTestProg)

env = Environment()
env.BuildTestProg('stuff', resourcefile='res.rc')

This produces the following on Linux:

% scons -Q
cc -o test_stuff.o -c test_stuff.c
cc -o tests/test_stuff test_stuff.o

And the following on Windows:

C:\>scons -Q
rc /nologo /fores.res res.rc
cl /Fotest_stuff.obj /c test_stuff.c /nologo
link /nologo /OUT:tests\test_stuff.exe test_stuff.obj res.res
embedManifestExeCheck(target, source, env)

Using AddMethod is better than just adding an instance method to a construction environment because it gets called
as a proper method, and because AddMethod provides for copying the method to any clones of the construction
environment instance.

20 Extending SCons: Writing
Your Own Scanners

SCons has built-in Scanners that know how to look in C/C++, Fortran, D, IDL, LaTeX, Python and SWIG source files
for information about other files that targets built from those files depend on. For example, if you have a file format
which uses #include to specify files which should be included into the source file when it is processed, you can use
an existing scanner already included in SCons. You can use the same mechanisms that SCons uses to create its built-
in Scanners to write Scanners of your own for file types that SCons does not know how to scan "out of the box."

20.1. A Simple Scanner Example
Suppose, for example, that we want to create a simple Scanner for .k files. A .k file contains some text that will be
processed, and can include other files on lines that begin with include followed by a file name:

include filename.k

Scanning a file will be handled by a Python function that you must supply. Here is a function that will use the Python
re module to scan for the include lines in our example:

import re

include_re = re.compile(r'^include\s+(\S+)$', re.M)

def kfile_scan(node, env, path, arg=None):
 contents = node.get_text_contents()
 return env.File(include_re.findall(contents))

It is important to note that you have to return a list of File nodes from the scanner function, simple strings for the file
names won't do. As in the examples we are showing here, you can use the File function of your current construction
environment in order to create nodes on the fly from a sequence of file names with relative paths.

The scanner function must accept the four specified arguments and return a list of implicit dependencies. Presumably,
these would be dependencies found from examining the contents of the file, although the function can perform any
manipulation at all to generate the list of dependencies.

A Simple Scanner Example

135

node
An SCons node object representing the file being scanned. The path name to the file can be used by converting
the node to a string using the str function, or an internal SCons get_text_contents object method can
be used to fetch the contents.

env
The construction environment in effect for this scan. The scanner function may choose to use construction
variables from this environment to affect its behavior.

path
A list of directories that form the search path for included files for this Scanner. This is how SCons handles the
$CPPPATH and $LIBPATH variables.

arg
An optional argument that can be passed to this scanner function when it is called from a scanner instance. The
argument is only supplied if it was given when the scanner instance is created (see the manpage section "Scanner
Objects"). This can be useful, for example, to distinguish which scanner type called us, if the function might be
bound to several scanner objects. Since the argument is only supplied in the function call if it was defined for that
scanner, the function needs to be prepared to possibly be called in different ways if multiple scanners are expected
to use this function - giving the parameter a default value as shown above is a good way to do this. If the function
to scanner relationship will be 1:1, just make sure they match.

A scanner object is created using the Scanner function, which typically takes an skeys argument to associate a file
suffix with this Scanner. The scanner object must then be associated with the $SCANNERS construction variable in
the current construction environment, typically by using the Append method:

kscan = Scanner(function=kfile_scan, skeys=['.k'])
env.Append(SCANNERS=kscan)

Let's put this all together. Our new file type, with the .k suffix, will be processed by a command named kprocess,
which lives in non-standard location /usr/local/bin, so we add that path to the execution environment so SCons
can find it. Here's what it looks like:

import re

include_re = re.compile(r'^include\s+(\S+)$', re.M)

def kfile_scan(node, env, path):
 contents = node.get_text_contents()
 includes = include_re.findall(contents)
 return env.File(includes)

kscan = Scanner(function=kfile_scan, skeys=['.k'])
env = Environment()
env.AppendENVPath('PATH', '/usr/local/bin')
env.Append(SCANNERS=kscan)

env.Command('foo', 'foo.k', 'kprocess < $SOURCES > $TARGET')

Assume a foo.k file like this:

Adding a search path to a Scanner: FindPathDirs

136

some initial text
include other_file
some other text

Now if we run scons we can see that the scanner works - it identified the dependency other_file via the detected
include line, although we get an error message because we forgot to create that file!

% scons -Q
scons: *** [foo] Implicit dependency `other_file' not found, needed by target `foo'.

20.2. Adding a search path to a Scanner:
FindPathDirs
If the build tool in question will use a path variable to search for included files or other dependencies, then the Scanner
will need to take that path variable into account as well - the same way $CPPPATH is used for files processed by the
C Preprocessor (used for C, C++, Fortran and others). Path variables may be lists of nodes or semicolon-separated
strings (SCons uses a semicolon here irrespective of the pathlist separator used by the native operating system), and
may contain construction variables to be expanded. A Scanner can take a path_function to process such a path
variable; the function produces a tuple of paths that is passed to the scanner function as its path parameter.

To make this easy, SCons provides the premade FindPathDirs function which returns a callable to expand a given
path variable (given as an SCons construction variable name) to a tuple of paths at the time the Scanner is called.
Deferring evaluation until that point allows, for instance, the path to contain $TARGET references which differ for
each file scanned.

Using FindPathDirs is easy. Continuing the above example, using $KPATH as the construction variable to
hold the paths (analogous to $CPPPATH), we just modify the call to the Scanner factory function to include a
path_function keyword argument:

kscan = Scanner(
 function=kfile_scan,
 skeys=['.k'],
 path_function=FindPathDirs('KPATH'),
)

FindPathDirs is called when the Scanner is created, and the callable object it returns is stored as an attribute in the
scanner. When the scanner is invoked, it calls that object, which processes the $KPATH from the current construction
environment, doing necessary expansions and, if necessary, adds related repository and variant directories, producing
a (possibly empty) tuple of paths that is passed on to the scanner function. The scanner function is then responsible for
using that list of paths to locate the include files identified by the scan. The next section will show an example of that.

As a side note, the returned method stores the path in an efficient way so lookups are fast even when variable
substitutions may be needed. This is important since many files get scanned in a typical build.

20.3. Using scanners with Builders
One approach for introducing a Scanner into the build is in conjunction with a Builder. There are two relvant optional
parameters we can use when creating a Builder: source_scanner and target_scanner. source_scanner
is used for scanning source files, and target_scanner is used for scanning the target once it is generated.

Using scanners with Builders

137

import os, re

include_re = re.compile(r"^include\s+(\S+)$", re.M)

def kfile_scan(node, env, path, arg=None):
 includes = include_re.findall(node.get_text_contents())
 print(f"DEBUG: scan of {str(node)!r} found {includes}")
 deps = []
 for inc in includes:
 for dir in path:
 file = str(dir) + os.sep + inc
 if os.path.exists(file):
 deps.append(file)
 break
 print(f"DEBUG: scanned dependencies found: {deps}")
 return env.File(deps)

kscan = Scanner(
 function=kfile_scan,
 skeys=[".k"],
 path_function=FindPathDirs("KPATH"),
)

def build_function(target, source, env):
 # Code to build "target" from "source"
 return None

bld = Builder(
 action=build_function,
 suffix=".k",
 source_scanner=kscan,
 src_suffix=".input",
)

env = Environment(BUILDERS={"KFile": bld}, KPATH="inc")
env.KFile("file")

Running this example would only show that the stub build_function is getting called, so some debug prints were
added to the scaner function, just to show the scanner is being invoked.

% scons -Q
DEBUG: scan of 'file.input' found ['other_file']
DEBUG: scanned dependencies found: ['inc/other_file']
build_function(["file.k"], ["file.input"])

The path-search implementation in kfile_scan works, but is quite simple-minded - a production scanner will
probably do something more sophisticated.

An emitter function can modify the list of sources or targets passed to the action function when the Builder is triggered.

A scanner function will not affect the list of sources or targets seen by the Builder during the build action. The scanner
function will, however, affect if the Builder should rebuild (if any of the files sourced by the Scanner have changed
for example).

21 Multi-Platform
Configuration (Autoconf
Functionality)

SCons has integrated support for build configuration similar in style to GNU Autoconf, but designed to be transparently
multi-platform. The configuration system can help figure out if external build requirements such as system libraries
or header files are available on the build system. This section describes how to use this SCons feature. (See also the
SCons man page for additional information).

21.1. Configure Contexts
The basic framework for multi-platform build configuration in SCons is to create a configure context inside a
construction environment by calling the Configure function, perform the desired checks for libraries, functions,
header files, etc., and then call the configure context's Finish method to finish off the configuration:

env = Environment()
conf = Configure(env)
Checks for libraries, header files, etc. go here!
env = conf.Finish()

The Finish call is required; if a new context is created while a context is active, even in a different construction
environment, scons will complain and exit.

SCons provides a number of pre-defined basic checks, as well as a mechanism for adding your own custom checks.

There are a few possible strategies for failing configure checks. Some checks may be for features without which you
cannot proceed. The simple approach here is just to exit SCons at that point - a number of the examples in this chapter
are coded that way. If there are multiple hard requirements, however, it may be friendlier to the user to set a flag in
case of any fails of hard requirements and accumulate a record of them, so that on the completion of the configure
context they can all be listed prior to failing the build - as it can be frustrating to have to iterate through the setup,
fixing one new requirement each iteration. Other checks may be for features which you can do without, and here the
strategy will usually be to set a construction variable which the rest of the build can examine for its absence/presence,
or to set particular compiler flags, library lists, etc. as appropriate for the circumstances, so you can proceed with the
build appropriately based on available features.

Checking for the Existence of Header Files

139

Note that SCons uses its own dependency mechanism to determine when a check needs to be run--that is, SCons does
not run the checks every time it is invoked, but caches the values returned by previous checks and uses the cached
values unless something has changed. This saves a tremendous amount of developer time while working on cross-
platform build issues.

The next sections describe the basic checks that SCons supports, as well as how to add your own custom checks.

21.2. Checking for the Existence of Header
Files
Testing the existence of a header file requires knowing what language the header file is. This information is supplied
in the language keyword parameter to the CheckHeader method. Since scons grew up in a world of C/C++ code,
a configure context also has a CheckCHeader method that specifically checks for the existence of a C header file:

env = Environment()
conf = Configure(env)
if not conf.CheckCHeader('math.h'):
 print('Math.h must be installed!')
 Exit(1)
if conf.CheckCHeader('foo.h'):
 conf.env.Append(CPPDEFINES='HAS_FOO_H')
env = conf.Finish()

As shown in the example, depending on the circumstances you can choose to terminate the build if a given header file
doesn't exist, or you can modify the construction environment based on the presence or absence of a header file (the
same applies to any other check). If there are a many elements to check for, it may be friendlier for the user if you do
not terminate on the first failure, but track the problems found until the end and report on all of them, that way the user
does not have to iterate multiple times, each time finding one new dependency that needs to be installed.

If you need to check for the existence a C++ header file, use the CheckCXXHeader method:

env = Environment()
conf = Configure(env)
if not conf.CheckCXXHeader('vector.h'):
 print('vector.h must be installed!')
 Exit(1)
env = conf.Finish()

21.3. Checking for the Availability of a Function
Check for the availability of a specific function using the CheckFunc method:

env = Environment()
conf = Configure(env)
if not conf.CheckFunc('strcpy'):
 print('Did not find strcpy(), using local version')
 conf.env.Append(CPPDEFINES=('strcpy','my_local_strcpy'))
env = conf.Finish()

Checking for the Availability of a Library

140

21.4. Checking for the Availability of a Library
Check for the availability of a library using the CheckLib method. You only specify the base part of the library
name, you don't need to add a lib prefix or a .a or .lib suffix:

env = Environment()
conf = Configure(env)
if not conf.CheckLib('m'):
 print('Did not find libm.a or m.lib, exiting!')
 Exit(1)
env = conf.Finish()

Because the ability to use a library successfully often depends on having access to a header file that describes the
library's interface, you can check for a library and a header file at the same time by using the CheckLibWithHeader
method:

env = Environment()
conf = Configure(env)
if not conf.CheckLibWithHeader('m', 'math.h', language='c'):
 print('Did not find libm.a or m.lib, exiting!')
 Exit(1)
env = conf.Finish()

This is essentially shorthand for separate calls to the CheckHeader and CheckLib functions.

21.5. Checking for the Availability of a typedef
Check for the availability of a typedef by using the CheckType method:

env = Environment()
conf = Configure(env)
if not conf.CheckType('off_t'):
 print('Did not find off_t typedef, assuming int')
 conf.env.Append(CPPDEFINES=('off_t','int'))
env = conf.Finish()

You can also add a string that will be placed at the beginning of the test file that will be used to check for the typedef.
This provide a way to specify files that must be included to find the typedef:

env = Environment()
conf = Configure(env)
if not conf.CheckType('off_t', '#include <sys/types.h>\n'):
 print('Did not find off_t typedef, assuming int')
 conf.env.Append(CPPDEFINES=('off_t','int'))
env = conf.Finish()

Checking the size of a datatype

141

21.6. Checking the size of a datatype
Check the size of a datatype by using the CheckTypeSize method:

env = Environment()
conf = Configure(env)
int_size = conf.CheckTypeSize('unsigned int')
print('sizeof unsigned int is', int_size)
env = conf.Finish()

% scons -Q
sizeof unsigned int is 4
scons: `.' is up to date.

21.7. Checking for the Presence of a program
Check for the presence of a program by using the CheckProg method:

env = Environment()
conf = Configure(env)
if not conf.CheckProg('foobar'):
 print('Unable to find the program foobar on the system')
 Exit(1)
env = conf.Finish()

21.8. Extending SCons: Adding Your Own
Custom Checks
A custom check is a Python function that checks for a certain condition to exist on the running system, usually using
methods that SCons supplies to take care of the details of checking whether a compilation succeeds, a link succeeds,
a program is runnable, etc. A simple custom check for the existence of a specific library might look as follows:

mylib_test_source_file = """
#include <mylib.h>
int main(int argc, char **argv)
{
 MyLibrary mylib(argc, argv);
 return 0;
}
"""

def CheckMyLibrary(context):

Extending SCons: Adding Your Own Custom Checks

142

 context.Message('Checking for MyLibrary...')
 result = context.TryLink(mylib_test_source_file, '.c')
 context.Result(result)
 return result

The Message and Result methods should typically begin and end a custom check to let the user know what's going
on: the Message call prints the specified message (with no trailing newline) and the Result call prints yes if the
check succeeds and no if it doesn't. The TryLink method actually tests for whether the specified program text will
successfully link.

(Note that a custom check can modify its check based on any arguments you choose to pass it, or by using or modifying
the configure context environment in the context.env attribute.)

This custom check function is then attached to the configure context by passing a dictionary to the Configure call
that maps a name of the check to the underlying function:

env = Environment()
conf = Configure(env, custom_tests={'CheckMyLibrary': CheckMyLibrary})

You'll typically want to make the check and the function name the same, as we've done here, to avoid potential
confusion.

We can then put these pieces together and actually call the CheckMyLibrary check as follows:

mylib_test_source_file = """
#include <mylib.h>
int main(int argc, char **argv)
{
 MyLibrary mylib(argc, argv);
 return 0;
}
"""

def CheckMyLibrary(context):
 context.Message('Checking for MyLibrary... ')
 result = context.TryLink(mylib_test_source_file, '.c')
 context.Result(result)
 return result

env = Environment()
conf = Configure(env, custom_tests={'CheckMyLibrary': CheckMyLibrary})
if not conf.CheckMyLibrary():
 print('MyLibrary is not installed!')
 Exit(1)
env = conf.Finish()

We would then add actual calls like Program() to build
something using the "env" construction environment.

If MyLibrary is not installed on the system, the output will look like:

Not Configuring When Cleaning Targets

143

% scons
scons: Reading SConscript file ...
Checking for MyLibrary... no
MyLibrary is not installed!

If MyLibrary is installed, the output will look like:

% scons
scons: Reading SConscript file ...
Checking for MyLibrary... yes
scons: done reading SConscript
scons: Building targets ...
 .
 .
 .

21.9. Not Configuring When Cleaning Targets
Using multi-platform configuration as described in the previous sections will run the configuration commands even
when invoking scons -c to clean targets:

% scons -Q -c
Checking for MyLibrary... yes
Removed foo.o
Removed foo

Although running the platform checks when removing targets doesn't hurt anything, it's usually unnecessary. You
can avoid this by using the GetOption method to check whether the -c (clean) option has been invoked on the
command line:

env = Environment()
if not env.GetOption('clean'):
 conf = Configure(env, custom_tests={'CheckMyLibrary': CheckMyLibrary})
 if not conf.CheckMyLibrary():
 print('MyLibrary is not installed!')
 Exit(1)
 env = conf.Finish()

% scons -Q -c
Removed foo.o
Removed foo

22 Caching Built Files

On multi-developer software projects, you can sometimes speed up every developer's builds a lot by allowing them to
share a cache of the derived files that they build. After all, it is relatively rare that any in-progress change affects more
than a few derived files, most will be unchanged. Using a cache can also help an individual developer: for example if
you wish to start work on a new feature in a clean tree, those build artifacts which could be reused can be retrieved
from the cache to populate the tree and save a lot of initial build time. SCons makes this easy and reliable.

22.1. Specifying the Derived-File Cache
Directory
To enable caching of derived files, use the CacheDir function in any SConscript file:

CacheDir('/usr/local/build_cache')

The cache directory you specify must have read and write access for all developers who will be accessing the cached
files (if --cache-readonly is used, only read access is required). It should also be in some central location
that all builds will be able to access. In environments where developers are using separate systems (like individual
workstations) for builds, this directory would typically be on a shared or NFS-mounted file system. While SCons will
create the specified cache directory as needed, in this multi user scenario it is usually best to create it ahead of time
so the access rights can be set up correctly.

Here's what happens: When a build has a CacheDir specified, every time a file is built, it is stored in that cache
directory indexed by its build signature. On subsequent builds, before an action is invoked to build a file, the build
signature is computed and SCons checks the derived-file cache directory to see if a file with the exact same build
signature already exists. 1 If so, the derived file will not be built locally, but will be copied into the local build directory
from the derived-file cache directory, like this:

% scons -Q

1 A few inside details: SCons tracks two main kinds of cryptographic hashes: a content signature, which is a hash of the contents of a file participating
in the build (dependencies as well as targets); and a build signature, which is a hash of the elements needed to build a target, such as the command
line, the contents of the sources, and possibly information about tools used in the build. The hash function produces a unique signature from its
inputs, no other set of inputs can produce that same signature. The build signature from building a target is used as the filename of the target file in
the derived-file cache - that way lookups are efficient, just compute a build signature and see if a file exists with that as the name.

The use of the build signature provides protection from concflicts: if two developers have different setups, so they would produce built objects
that are not identical, then because the difference in tools will show up in the build signature, which is used as the name of the cache entry, they
will end up being stored as separate entries.

Keeping Build Output Consistent

145

cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q
Retrieved `hello.o' from cache
Retrieved `hello' from cache

Note that the CacheDir feature requires that the build signature be calculated, even if you configure SCons to
use timestamps to decide if files are up to date (see the Chapter 6, Dependencies chapter for information about the
Decider function), since the build signature is used to determine if a target file exists in the cache. Consequently,
using CacheDir may reduce or negate any performance improvements from using timestamps for up-to-date
decisions.

22.2. Keeping Build Output Consistent
One potential drawback to using a derived-file cache is that the output printed by SCons can be inconsistent from
invocation to invocation, because any given file may be rebuilt one time and retrieved from the derived-file cache the
next time. This can make analyzing build output more difficult, especially for automated scripts that expect consistent
output each time.

If, however, you use the --cache-show option, SCons will print the command line that it would have executed to
build the file, even when it is retrieving the file from the derived-file cache. This keeps the build output consistent
across builds:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q --cache-show
cc -o hello.o -c hello.c
cc -o hello hello.o

The trade-off, of course, is that you no longer know whether or not SCons has retrieved a derived file from cache or
has rebuilt it locally.

22.3. Not Using the Derived-File Cache for
Specific Files
You may want to disable caching for certain specific files in your configuration. For example, if you only want to put
executable files in a central cache, but not the intermediate object files, you can use the NoCache function to specify
that the object files should not be cached:

env = Environment()
obj = env.Object('hello.c')
env.Program('hello.c')
CacheDir('cache')
NoCache('hello.o')

Disabling the Derived-File Cache

146

Then when you run scons after cleaning the built targets, it will recompile the object file locally (since it doesn't exist in
the derived-file cache directory), but still realize that the derived-file cache directory contains an up-to-date executable
program that can be retrieved instead of re-linking:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q
cc -o hello.o -c hello.c
Retrieved `hello' from cache

22.4. Disabling the Derived-File Cache
Retrieving an already-built file from the derived-file cache is usually a significant time-savings over rebuilding the
file, but how much of a savings (or even whether it saves time at all) can depend a great deal on your system or network
configuration. For example, retrieving cached files from a busy server over a busy network might end up being slower
than rebuilding the files locally.

In these cases, you can specify the --cache-disable command-line option to tell SCons to not retrieve already-
built files from the derived-file cache directory:

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q
Retrieved `hello.o' from cache
Retrieved `hello' from cache
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q --cache-disable
cc -o hello.o -c hello.c
cc -o hello hello.o

22.5. Populating a Derived-File Cache With
Already-Built Files
Sometimes, you may have one or more derived files already built in your local build tree that you wish to make
available to other people doing builds. For example, you may find it more effective to perform integration builds with
the cache disabled (per the previous section) and only populate the derived-file cache directory with the built files after
the integration build has completed successfully. This way, the cache will only get filled up with derived files that are
part of a complete, successful build not with files that might be later overwritten while you debug integration problems.

Minimizing Cache Contention: the --random Option

147

In this case, you can use the the --cache-force option to tell SCons to put all derived files in the cache, even if
the files already exist in your local tree from having been built by a previous invocation:

% scons -Q --cache-disable
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q -c
Removed hello.o
Removed hello
% scons -Q --cache-disable
cc -o hello.o -c hello.c
cc -o hello hello.o
% scons -Q --cache-force
scons: `.' is up to date.
% scons -Q
scons: `.' is up to date.

Notice how the above sample run demonstrates that the --cache-disable option avoids putting the built
hello.o and hello files in the cache, but after using the --cache-force option, the files have been put in the
cache for the next invocation to retrieve.

22.6. Minimizing Cache Contention: the --
random Option
If you allow multiple builds to update the derived-file cache directory simultaneously, two builds that occur at the
same time can sometimes start "racing" with one another to build the same files in the same order. If, for example,
you are linking multiple files into an executable program:

Program('prog', ['f1.c', 'f2.c', 'f3.c', 'f4.c', 'f5.c'])

SCons will normally build the input object files on which the program depends in their normal, sorted order:

% scons -Q
cc -o f1.o -c f1.c
cc -o f4.o -c f4.c
cc -o f5.o -c f5.c
cc -o f2.o -c f2.c
cc -o f3.o -c f3.c
cc -o prog f1.o f2.o f3.o f4.o f5.o

But if two such builds take place simultaneously, they may each look in the cache at nearly the same time and both
decide that f1.o must be rebuilt and pushed into the derived-file cache directory, then both decide that f2.o must
be rebuilt (and pushed into the derived-file cache directory), then both decide that f3.o must be rebuilt... This won't
cause any actual build problems--both builds will succeed, generate correct output files, and populate the cache--but
it does represent wasted effort.

To alleviate such contention for the cache, you can use the --random command-line option to tell SCons to build
dependencies in a random order:

 % scons -Q --random
 cc -o f3.o -c f3.c

Using a Custom CacheDir Class

148

 cc -o f1.o -c f1.c
 cc -o f5.o -c f5.c
 cc -o f2.o -c f2.c
 cc -o f4.o -c f4.c
 cc -o prog f1.o f2.o f3.o f4.o f5.o

Multiple builds using the --random option will usually build their dependencies in different, random orders, which
minimizes the chances for a lot of contention for same-named files in the derived-file cache directory. Multiple
simultaneous builds might still race to try to build the same target file on occasion, but long sequences of inefficient
contention should be rare.

Note, of course, the --random option will cause the output that SCons prints to be inconsistent from invocation to
invocation, which may be an issue when trying to compare output from different build runs.

If you want to make sure dependencies will be built in a random order without having to specify the --random on
very command line, you can use the SetOption function to set the random option within any SConscript file:

SetOption('random', 1)
Program('prog', ['f1.c', 'f2.c', 'f3.c', 'f4.c', 'f5.c'])

22.7. Using a Custom CacheDir Class
You can customize the behavior of derived-file caching to add your own features, for example to support compressed
and/or encrypted cache files, modify cache file permissions to better support shared caches, gather additional statistics
and data, etc.

To define custom cache behavior, subclass the SCons.CacheDir.CacheDir class, specializing those methods
you want to change. You can pass this custom class as the custom_class parameter when calling CacheDir for
global reach, or when calling env.CacheDir for a specific environment. You can also set the construction variable
$CACHEDIR_CLASS to the custom class - this needs to happen before configuring the cache in that environment.
SCons will internally invoke and use your custom class when performing cache operations. The below example shows
a simple use case of overriding the copy_from_cache method to record the total number of bytes pulled from
the cache.

import os
import SCons.CacheDir

class CustomCacheDir(SCons.CacheDir.CacheDir):
 total_retrieved = 0

 @classmethod
 def copy_from_cache(cls, env, src, dst):
 # record total bytes pulled from cache
 cls.total_retrieved += os.stat(src).st_size
 return super().copy_from_cache(env, src, dst)

env = Environment()
env.CacheDir('scons-cache', custom_class=CustomCacheDir)
...

23 Alias Targets

We've already seen how you can use the Alias function to create a target named install:

env = Environment()
hello = env.Program('hello.c')
env.Install('/usr/bin', hello)
env.Alias('install', '/usr/bin')

You can then use this alias on the command line to tell SCons more naturally that you want to install files:

% scons -Q install
cc -o hello.o -c hello.c
cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello"

Like other Builder methods, though, the Alias method returns an object representing the alias being built. You can
then use this object as input to anothother Builder. This is especially useful if you use such an object as input to another
call to the Alias Builder, allowing you to create a hierarchy of nested aliases:

env = Environment()
p = env.Program('foo.c')
l = env.Library('bar.c')
env.Install('/usr/bin', p)
env.Install('/usr/lib', l)
ib = env.Alias('install-bin', '/usr/bin')
il = env.Alias('install-lib', '/usr/lib')
env.Alias('install', [ib, il])

This example defines separate install, install-bin, and install-lib aliases, allowing you finer control
over what gets installed:

% scons -Q install-bin
cc -o foo.o -c foo.c
cc -o foo foo.o
Install file: "foo" as "/usr/bin/foo"
% scons -Q install-lib

150

cc -o bar.o -c bar.c
ar rc libbar.a bar.o
ranlib libbar.a
Install file: "libbar.a" as "/usr/lib/libbar.a"
% scons -Q -c /
Removed foo.o
Removed foo
Removed /usr/bin/foo
Removed bar.o
Removed libbar.a
Removed /usr/lib/libbar.a
% scons -Q install
cc -o foo.o -c foo.c
cc -o foo foo.o
Install file: "foo" as "/usr/bin/foo"
cc -o bar.o -c bar.c
ar rc libbar.a bar.o
ranlib libbar.a
Install file: "libbar.a" as "/usr/lib/libbar.a"

24 Java Builds

So far, we've been using examples of building C and C++ programs to demonstrate the features of SCons. SCons also
supports building Java programs, but Java builds are handled slightly differently, which reflects the ways in which the
Java compiler and tools build programs differently than other languages' tool chains.

24.1. Building Java Class Files: the Java
Builder
The basic activity when programming in Java, of course, is to take one or more .java files containing Java source
code and to call the Java compiler to turn them into one or more .class files. In SCons, you do this by giving the
Java Builder a target directory in which to put the .class files, and a source directory that contains the .java files:

Java('classes', 'src')

If the src directory contains three .java source files, then running SCons might look like this:

% scons -Q
javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java

SCons will actually search the src directory tree for all of the .java files. The Java compiler will then create the
necessary class files in the classes subdirectory, based on the class names found in the .java files.

24.2. How SCons Handles Java Dependencies
In addition to searching the source directory for .java files, SCons actually runs the .java files through a stripped-
down Java parser that figures out what classes are defined. In other words, SCons knows, without you having to tell
it, what .class files will be produced by the javac call. So our one-liner example from the preceding section:

Java('classes', 'src')

Will not only tell you reliably that the .class files in the classes subdirectory are up-to-date:

% scons -Q
javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java

Building Java Archive (.jar) Files: the Jar Builder

152

% scons -Q classes
scons: `classes' is up to date.

But it will also remove all of the generated .class files, even for inner classes, without you having to specify them
manually. For example, if our Example1.java and Example3.java files both define additional classes, and
the class defined in Example2.java has an inner class, running scons -c will clean up all of those .class
files as well:

% scons -Q
javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java
% scons -Q -c classes
Removed classes/Example1.class
Removed classes/AdditionalClass1.class
Removed classes/Example2$Inner2.class
Removed classes/Example2.class
Removed classes/Example3.class
Removed classes/AdditionalClass3.class

To ensure correct handling of .class dependencies in all cases, you need to tell SCons which Java version is being
used. This is needed because Java 1.5 changed the .class file names for nested anonymous inner classes. Use the
JAVAVERSION construction variable to specify the version in use. With Java 1.6, the one-liner example can then
be defined like this:

Java('classes', 'src', JAVAVERSION='1.6')

See JAVAVERSION in the man page for more information.

24.3. Building Java Archive (.jar) Files: the
Jar Builder
After building the class files, it's common to collect them into a Java archive (.jar) file, which you do by calling the
Jar Builder. If you want to just collect all of the class files within a subdirectory, you can just specify that subdirectory
as the Jar source:

Java(target='classes', source='src')
Jar(target='test.jar', source='classes')

SCons will then pass that directory to the jar command, which will collect all of the underlying .class files:

% scons -Q
javac -d classes -sourcepath src src/Example1.java src/Example2.java src/Example3.java
jar cf test.jar classes

If you want to keep all of the .class files for multiple programs in one location, and only archive some of them in
each .jar file, you can pass the Jar builder a list of files as its source. It's extremely simple to create multiple .jar
files this way, using the lists of target class files created by calls to the Java builder as sources to the various Jar calls:

prog1_class_files = Java(target='classes', source='prog1')
prog2_class_files = Java(target='classes', source='prog2')

Building C Header and Stub Files: the JavaH Builder

153

Jar(target='prog1.jar', source=prog1_class_files)
Jar(target='prog2.jar', source=prog2_class_files)

This will then create prog1.jar and prog2.jar next to the subdirectories that contain their .java files:

% scons -Q
javac -d classes -sourcepath prog1 prog1/Example1.java prog1/Example2.java
javac -d classes -sourcepath prog2 prog2/Example3.java prog2/Example4.java
jar cf prog1.jar -C classes Example1.class -C classes Example2.class
jar cf prog2.jar -C classes Example3.class -C classes Example4.class

24.4. Building C Header and Stub Files: the
JavaH Builder
You can generate C header and source files for implementing native methods, by using the JavaH Builder. There are
several ways of using the JavaH Builder. One typical invocation might look like:

classes = Java(target='classes', source='src/pkg/sub')
JavaH(target='native', source=classes)

The source is a list of class files generated by the call to the Java Builder, and the target is the output directory in
which we want the C header files placed. The target gets converted into the -d when SCons runs javah:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java
javah -d native -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3

In this case, the call to javah will generate the header files native/pkg_sub_Example1.h, native/
pkg_sub_Example2.h and native/pkg_sub_Example3.h. Notice that SCons remembered that the class
files were generated with a target directory of classes, and that it then specified that target directory as the -
classpath option to the call to javah.

Although it's more convenient to use the list of class files returned by the Java Builder as the source of a call to
the JavaH Builder, you can specify the list of class files by hand, if you prefer. If you do, you need to set the
$JAVACLASSDIR construction variable when calling JavaH:

Java(target='classes', source='src/pkg/sub')
class_file_list = [
 'classes/pkg/sub/Example1.class',
 'classes/pkg/sub/Example2.class',
 'classes/pkg/sub/Example3.class',
]
JavaH(target='native', source=class_file_list, JAVACLASSDIR='classes')

The $JAVACLASSDIR value then gets converted into the -classpath when SCons runs javah:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java
javah -d native -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3

Building RMI Stub and Skeleton Class Files: the RMIC
Builder

154

Lastly, if you don't want a separate header file generated for each source file, you can specify an explicit File Node
as the target of the JavaH Builder:

classes = Java(target='classes', source='src/pkg/sub')
JavaH(target=File('native.h'), source=classes)

Because SCons assumes by default that the target of the JavaH builder is a directory, you need to use the File
function to make sure that SCons doesn't create a directory named native.h. When a file is used, though, SCons
correctly converts the file name into the javah -o option:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java src/pkg/sub/Example3.java
javah -o native.h -classpath classes pkg.sub.Example1 pkg.sub.Example2 pkg.sub.Example3

Note that the the javah command was removed from the JDK as of JDK 10, and the approved method (available since
JDK 8) is to use javac to generate native headers at the same time as the Java source code is compiled.. As such the
JavaH builder is of limited utility in later Java versions.

24.5. Building RMI Stub and Skeleton Class
Files: the RMIC Builder
You can generate Remote Method Invocation stubs by using the RMIC Builder. The source is a list of directories,
typically returned by a call to the Java Builder, and the target is an output directory where the _Stub.class and
_Skel.class files will be placed:

classes = Java(target='classes', source='src/pkg/sub')
RMIC(target='outdir', source=classes)

As it did with the JavaH Builder, SCons remembers the class directory and passes it as the -classpath option
to rmic:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/Example1.java src/pkg/sub/Example2.java
rmic -d outdir -classpath classes pkg.sub.Example1 pkg.sub.Example2

This example would generate the files outdir/pkg/sub/Example1_Skel.class, outdir/pkg/
sub/Example1_Stub.class, outdir/pkg/sub/Example2_Skel.class and outdir/pkg/sub/
Example2_Stub.class.

25 Internationalization and
localization with gettext

The gettext toolset supports internationalization and localization of SCons-based projects. Builders provided
by gettext automatize generation and updates of translation files. You can manage translations and translation
templates similarly to how it's done with autotools.

25.1. Prerequisites
To follow examples provided in this chapter set up your operating system to support two or more languages. In
following examples we use locales en_US, de_DE, and pl_PL.

Ensure, that you have GNU gettext utilities [http://www.gnu.org/software/gettext/manual/gettext.html] installed on
your system.

To edit translation files you may wish to install poedit [http://www.poedit.net/] editor.

25.2. Simple project
Let's start with a very simple project, the "Hello world" program for example

/* hello.c */
#include <stdio.h>
int main(int argc, char* argv[])
{
 printf("Hello world\n");
 return 0;
}

Prepare a SConstruct to compile the program as usual.

SConstruct
env = Environment()
hello = Program(["hello.c"])

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.poedit.net/
http://www.poedit.net/

Simple project

156

Now we'll convert the project to a multi-lingual one. If you don't already have GNU gettext utilities [http://
www.gnu.org/software/gettext/manual/gettext.html] installed, install them from your preffered package repository, or
download from http://ftp.gnu.org/gnu/gettext/ [http://ftp.gnu.org/gnu/gettext/]. For the purpose of this example, you
should have following three locales installed on your system: en_US, de_DE and pl_PL. On debian, for example,
you may enable certain locales through dpkg-reconfigure locales.

First prepare the hello.c program for internationalization. Change the previous code so it reads as follows:

/* hello.c */
#include <stdio.h>
#include <libintl.h>
#include <locale.h>
int main(int argc, char* argv[])
{
 bindtextdomain("hello", "locale");
 setlocale(LC_ALL, "");
 textdomain("hello");
 printf(gettext("Hello world\n"));
 return 0;
}

Detailed recipes for such conversion can be found at http://www.gnu.org/software/gettext/manual/
gettext.html#Sources [http://www.gnu.org/software/gettext/manual/gettext.html#Sources]. The gettext("...")
has two purposes. First, it marks messages for the xgettext(1) program, which we will use to extract from the sources
the messages for localization. Second, it calls the gettext library internals to translate the message at runtime.

Now we shall instruct SCons how to generate and maintain translation files. For that, use the Translate builder and
MOFiles builder. The first one takes source files, extracts internationalized messages from them, creates so-called
POT file (translation template), and then creates PO translation files, one for each requested language. Later, during
the development lifecycle, the builder keeps all these files up-to date. The MOFiles builder compiles the PO files to
binary form. Then install the MO files under directory called locale.

The completed SConstruct is as follows:

SConstruct
env = Environment(tools = ['default', 'gettext'])
hello = env.Program(["hello.c"])
env['XGETTEXTFLAGS'] = [
 '--package-name=%s' % 'hello',
 '--package-version=%s' % '1.0',
]
po = env.Translate(["pl","en", "de"], ["hello.c"], POAUTOINIT = 1)
mo = env.MOFiles(po)
InstallAs(["locale/en/LC_MESSAGES/hello.mo"], ["en.mo"])
InstallAs(["locale/pl/LC_MESSAGES/hello.mo"], ["pl.mo"])
InstallAs(["locale/de/LC_MESSAGES/hello.mo"], ["de.mo"])

Generate the translation files with scons po-update. You should see the output from SCons simillar to this:

user@host:$ scons po-update

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://ftp.gnu.org/gnu/gettext/
http://ftp.gnu.org/gnu/gettext/
http://www.gnu.org/software/gettext/manual/gettext.html#Sources
http://www.gnu.org/software/gettext/manual/gettext.html#Sources
http://www.gnu.org/software/gettext/manual/gettext.html#Sources

Simple project

157

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
Entering '/home/ptomulik/projects/tmp'
xgettext --package-name=hello --package-version=1.0 -o - hello.c
Leaving '/home/ptomulik/projects/tmp'
Writting 'messages.pot' (new file)
msginit --no-translator -l pl -i messages.pot -o pl.po
Created pl.po.
msginit --no-translator -l en -i messages.pot -o en.po
Created en.po.
msginit --no-translator -l de -i messages.pot -o de.po
Created de.po.
scons: done building targets.

If everything is right, you should see following new files.

user@host:$ ls *.po*
de.po en.po messages.pot pl.po

Open en.po in poedit and provide the English translation to message "Hello world\n". Do the same for de.po
(deutsch) and pl.po (polish). Let the translations be, for example:

• en: "Welcome to beautiful world!\n"

• de: "Hallo Welt!\n"

• pl: "Witaj swiecie!\n"

Now compile the project by executing scons. The output should be similar to this:

user@host:$ scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
msgfmt -c -o de.mo de.po
msgfmt -c -o en.mo en.po
gcc -o hello.o -c hello.c
gcc -o hello hello.o
Install file: "de.mo" as "locale/de/LC_MESSAGES/hello.mo"
Install file: "en.mo" as "locale/en/LC_MESSAGES/hello.mo"
msgfmt -c -o pl.mo pl.po
Install file: "pl.mo" as "locale/pl/LC_MESSAGES/hello.mo"
scons: done building targets.

SCons automatically compiled the PO files to binary format MO, and the InstallAs lines installed these files under
locale folder.

Your program should be now ready. You may try it as follows (linux):

Simple project

158

user@host:$ LANG=en_US.UTF-8 ./hello
Welcome to beautiful world

user@host:$ LANG=de_DE.UTF-8 ./hello
Hallo Welt

user@host:$ LANG=pl_PL.UTF-8 ./hello
Witaj swiecie

To demonstrate the further life of translation files, let's change Polish translation (poedit pl.po) to "Witaj drogi
swiecie\n". Run scons to see how scons reacts to this

user@host:$scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
msgfmt -c -o pl.mo pl.po
Install file: "pl.mo" as "locale/pl/LC_MESSAGES/hello.mo"
scons: done building targets.

Now, open hello.c and add another one printf line with new message.

/* hello.c */
#include <stdio.h>
#include <libintl.h>
#include <locale.h>
int main(int argc, char* argv[])
{
 bindtextdomain("hello", "locale");
 setlocale(LC_ALL, "");
 textdomain("hello");
 printf(gettext("Hello world\n"));
 printf(gettext("and good bye\n"));
 return 0;
}

Compile project with scons. This time, the msgmerge(1) program is used by SCons to update PO file. The output
from compilation is like:

user@host:$scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
Entering '/home/ptomulik/projects/tmp'
xgettext --package-name=hello --package-version=1.0 -o - hello.c

Simple project

159

Leaving '/home/ptomulik/projects/tmp'
Writting 'messages.pot' (messages in file were outdated)
msgmerge --update de.po messages.pot
... done.
msgfmt -c -o de.mo de.po
msgmerge --update en.po messages.pot
... done.
msgfmt -c -o en.mo en.po
gcc -o hello.o -c hello.c
gcc -o hello hello.o
Install file: "de.mo" as "locale/de/LC_MESSAGES/hello.mo"
Install file: "en.mo" as "locale/en/LC_MESSAGES/hello.mo"
msgmerge --update pl.po messages.pot
... done.
msgfmt -c -o pl.mo pl.po
Install file: "pl.mo" as "locale/pl/LC_MESSAGES/hello.mo"
scons: done building targets.

The next example demonstrates what happens if we change the source code in such way that the internationalized
messages do not change. The answer is that none of translation files (POT, PO) are touched (i.e. no content changes,
no creation/modification time changed and so on). Let's append another line to the program (after the last printf), so
its code becomes:

/* hello.c */
#include <stdio.h>
#include <libintl.h>
#include <locale.h>
int main(int argc, char* argv[])
{
 bindtextdomain("hello", "locale");
 setlocale(LC_ALL, "");
 textdomain("hello");
 printf(gettext("Hello world\n"));
 printf(gettext("and good bye\n"));
 printf("----------------\n");
 return a;
}

Compile the project. You'll see on your screen

user@host:$scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
Entering '/home/ptomulik/projects/tmp'
xgettext --package-name=hello --package-version=1.0 -o - hello.c
Leaving '/home/ptomulik/projects/tmp'
Not writting 'messages.pot' (messages in file found to be up-to-date)
gcc -o hello.o -c hello.c
gcc -o hello hello.o
scons: done building targets.

Simple project

160

As you see, the internationalized messages ditn't change, so the POT and the rest of translation files have not even
been touched.

26 Miscellaneous
Functionality

SCons supports a lot of additional functionality that doesn't readily fit into the other chapters.

26.1. Verifying the Python Version: the
EnsurePythonVersion Function
Although the SCons code itself will run on any 2.x Python version 2.7 or later, you are perfectly free to make use of
Python syntax and modules from later versions when writing your SConscript files or your own local modules.
If you do this, it's usually helpful to configure SCons to exit gracefully with an error message if it's being run with a
version of Python that simply won't work with your code. This is especially true if you're going to use SCons to build
source code that you plan to distribute publicly, where you can't be sure of the Python version that an anonymous
remote user might use to try to build your software.

SCons provides an EnsurePythonVersion function for this. You simply pass it the major and minor versions
numbers of the version of Python you require:

EnsurePythonVersion(2, 5)

And then SCons will exit with the following error message when a user runs it with an unsupported earlier version
of Python:

% scons -Q
Python 2.5 or greater required, but you have Python 2.3.6

26.2. Verifying the SCons Version: the
EnsureSConsVersion Function
You may, of course, write your SConscript files to use features that were only added in recent versions of SCons.
When you publicly distribute software that is built using SCons, it's helpful to have SCons verify the version being

Accessing SCons Version: the GetSConsVersion
Function

162

used and exit gracefully with an error message if the user's version of SCons won't work with your SConscript
files. SCons provides an EnsureSConsVersion function that verifies the version of SCons in the same the
EnsurePythonVersion function verifies the version of Python, by passing in the major and minor versions
numbers of the version of SCons you require:

EnsureSConsVersion(1, 0)

And then SCons will exit with the following error message when a user runs it with an unsupported earlier version
of SCons:

% scons -Q
SCons 1.0 or greater required, but you have SCons 0.98.5

26.3. Accessing SCons Version: the
GetSConsVersion Function
While EnsureSConsVersion is acceptable for most cases, there are times where the user will want to support
multiple SCons versions simultaneously. In this scenario, it's beneficial to retrieve version information of the currently
executing SCons directly. This was previously only possible by accessing SCons internals. From SCons4.8 onwards,
it's now possible to instead call GetSConsVersion to recieve a tuple containing the major, minor, and revision
values of the current version.

if GetSConsVersion() >= (4, 9):
 # Some function got a new argument in 4.9 that we want to take advantage of
 SomeFunc(arg1, arg2, arg3)
else:
 # Can't use the extended syntax, but it doesn't warrant exiting prematurely
 SomeFunc(arg1, arg2)

26.4. Explicitly Terminating SCons While
Reading SConscript Files: the Exit Function
SCons supports an Exit function which can be used to terminate SCons while reading the SConscript files, usually
because you've detected a condition under which it doesn't make sense to proceed:

if ARGUMENTS.get('FUTURE'):
 print("The FUTURE option is not supported yet!")
 Exit(2)
env = Environment()
env.Program('hello.c')

% scons -Q FUTURE=1
The FUTURE option is not supported yet!

Searching for Files: the FindFile Function

163

% scons -Q
cc -o hello.o -c hello.c
cc -o hello hello.o

The Exit function takes as an argument the (numeric) exit status that you want SCons to exit with. If you don't specify
a value, the default is to exit with 0, which indicates successful execution.

Note that the Exit function is equivalent to calling the Python sys.exit function (which the it actually calls), but
because Exit is a SCons function, you don't have to import the Python sys module to use it.

26.5. Searching for Files: the FindFile
Function
The FindFile function searches for a file in a list of directories. If there is only one directory, it can be given
as a simple string. The function returns a File node if a matching file exists, or None if no file is found. (See the
documentation for the Glob function for an alternative way of searching for entries in a directory.)

one directory
print("%s"%FindFile('missing', '.'))
t = FindFile('exists', '.')
print("%s %s"%(t.__class__, t))

% scons -Q
None
<class 'SCons.Node.FS.File'> exists
scons: `.' is up to date.

several directories
includes = ['.', 'include', 'src/include']
headers = ['nonesuch.h', 'config.h', 'private.h', 'dist.h']
for hdr in headers:
 print('%-12s: %s'%(hdr, FindFile(hdr, includes)))

% scons -Q
nonesuch.h : None
config.h : config.h
private.h : src/include/private.h
dist.h : include/dist.h
scons: `.' is up to date.

If the file exists in more than one directory, only the first occurrence is returned.

print(FindFile('multiple', ['sub1', 'sub2', 'sub3']))
print(FindFile('multiple', ['sub2', 'sub3', 'sub1']))
print(FindFile('multiple', ['sub3', 'sub1', 'sub2']))

% scons -Q

Handling Nested Lists: the Flatten Function

164

sub1/multiple
sub2/multiple
sub3/multiple
scons: `.' is up to date.

In addition to existing files, FindFile will also find derived files (that is, non-leaf files) that haven't been built yet.
(Leaf files should already exist, or the build will fail!)

Neither file exists, so build will fail
Command('derived', 'leaf', 'cat >$TARGET $SOURCE')
print(FindFile('leaf', '.'))
print(FindFile('derived', '.'))

% scons -Q
leaf
derived
cat > derived leaf

Only 'leaf' exists
Command('derived', 'leaf', 'cat >$TARGET $SOURCE')
print(FindFile('leaf', '.'))
print(FindFile('derived', '.'))

% scons -Q
leaf
derived
cat > derived leaf

If a source file exists, FindFile will correctly return the name in the build directory.

Only 'src/leaf' exists
VariantDir('build', 'src')
print(FindFile('leaf', 'build'))

% scons -Q
build/leaf
scons: `.' is up to date.

26.6. Handling Nested Lists: the Flatten
Function
SCons supports a Flatten function which takes an input Python sequence (list or tuple) and returns a flattened list
containing just the individual elements of the sequence. This can be handy when trying to examine a list composed of
the lists returned by calls to various Builders. For example, you might collect object files built in different ways into
one call to the Program Builder by just enclosing them in a list, as follows:

Handling Nested Lists: the Flatten Function

165

objects = [
 Object('prog1.c'),
 Object('prog2.c', CCFLAGS='-DFOO'),
]
Program(objects)

Because the Builder calls in SCons flatten their input lists, this works just fine to build the program:

% scons -Q
cc -o prog1.o -c prog1.c
cc -o prog2.o -c -DFOO prog2.c
cc -o prog1 prog1.o prog2.o

But if you were debugging your build and wanted to print the absolute path of each object file in the objects list,
you might try the following simple approach, trying to print each Node's abspath attribute:

objects = [
 Object('prog1.c'),
 Object('prog2.c', CCFLAGS='-DFOO'),
]
Program(objects)

for object_file in objects:
 print(object_file.abspath)

This does not work as expected because each call to str is operating an embedded list returned by each Object
call, not on the underlying Nodes within those lists:

% scons -Q
AttributeError: 'NodeList' object has no attribute 'abspath':
 File "/home/my/project/SConstruct", line 8:
 print(object_file.abspath)

The solution is to use the Flatten function so that you can pass each Node to the str separately:

objects = [
 Object('prog1.c'),
 Object('prog2.c', CCFLAGS='-DFOO'),
]
Program(objects)

for object_file in Flatten(objects):
 print(object_file.abspath)

% scons -Q
/home/me/project/prog1.o
/home/me/project/prog2.o
cc -o prog1.o -c prog1.c
cc -o prog2.o -c -DFOO prog2.c

Finding the Invocation Directory: the GetLaunchDir
Function

166

cc -o prog1 prog1.o prog2.o

26.7. Finding the Invocation Directory: the
GetLaunchDir Function
If you need to find the directory from which the user invoked the scons command, you can use the GetLaunchDir
function:

env = Environment(
 LAUNCHDIR = GetLaunchDir(),
)
env.Command('directory_build_info',
 '$LAUNCHDIR/build_info'
 Copy('$TARGET', '$SOURCE'))

Because SCons is usually invoked from the top-level directory in which the SConstruct file lives, the Python
os.getcwd() is often equivalent. However, the SCons -u, -U and -D command-line options, when invoked from a
subdirectory, will cause SCons to change to the directory in which the SConstruct file is found. When those options
are used, GetLaunchDir will still return the path to the user's invoking subdirectory, allowing the SConscript
configuration to still get at configuration (or other) files from the originating directory.

26.8. Declaring Additional Outputs: the
SideEffect Function
Sometimes the way an action is defined causes effects on files that SCons does not recognize as targets. The
SideEffect method can be used to informs SCons about such files. This can be used just to flag a dependency for
use in subsequent build steps, although there is usually a better way to do that. The primary use for the SideEffect
method is to prevent two build steps from simultaneously modifying or accessing the same file in a way that could
impact each other.

In this example, the rule to build file1 will also put data into log, which is used as a source for the command to
generate file2, but log is unknown to SCons on a clean build: it neither exists, nor is it a target output by any
builder. The SConscript uses SideEffect to inform SCons about the additional output file.

env = Environment()
f2 = env.Command(
 target='file2',
 source='log',
 action=Copy('$TARGET', '$SOURCE')
)
f1 = env.Command(
 target='file1',
 source=[],
 action='echo >$TARGET data1; echo >log updated file1'
)
env.SideEffect('log', f1)

Declaring Additional Outputs: the SideEffect
Function

167

Without the SideEffect, this build would fail with a message Source `log' not found, needed by
target `file2', but now it can proceed:

% scons -Q
echo > file1 data1; echo >log updated file1
Copy("file2", "log")

However, it is better to actually identify log as a target, since in this case that's what it is:

env = Environment()
f2 = env.Command(
 target='file2',
 source='log',
 action=Copy('$TARGET', '$SOURCE')
)
f1 = env.Command(
 target=['file1', 'log'],
 source=[],
 action='echo >$TARGET data1; echo >log updated file1'
)

% scons -Q
echo > file1 data1; echo >log updated file1
Copy("file2", "log")

In general, SideEffect is not intended for the case when a command produces extra target files (that is, files
which will be used as sources to other build steps). For example, the the Microsoft Visual C++ compiler is capable of
performing incremental linking, for which it uses a status file - such that linking foo.exe also produces a foo.ilk,
or uses it if it was already present, if the /INCREMENTAL option was supplied. Specifying foo.ilk as a side-effect
of foo.exe is not a recommended use of SideEffect since foo.ilk is used by the link. SCons handles side-
effect files slightly differently in its analysis of the dependency graph. When a command produces multiple output files,
they should be specified as multiple targets of the call to the relevant builder function. The SideEffect function
itself should really only be used when it's important to ensure that commands are not executed in parallel, such as
when a "peripheral" file (such as a log file) may actually be updated by more than one command invocation.

Unfortunately, the tool which sets up the Program builder for the Microsoft Visual C++ compiler chain does not
come prebuilt with an understanding of the details of the .ilk example - that the target list would need to change in
the presence of that specific option flag. Unlike the trivial example above where we could simply tell the Command
builder there were two targets of the action, modifying the chain of events for a builder like Program, though not
inherently complex, is definitely an advanced SCons topic. It's okay to use SideEffect here to get started, as long
as it comes with an understanding that it's "not quite right". Perhaps leave a comment in the file as a reminder, if it
does turn out to cause problems later.

So if the main use is to prevent parallelism problems, here is an example to illustrate. Say a program that you need
to call to build a target file will also update a log file describing what the program does while building the target.
The following configuration would have SCons invoke a hypothetical script named build (in the local directory) with
command-line arguments telling it to write log information to a common logfile.txt file:

env = Environment()
env.Command(
 target='file1.out',
 source='file1.in',

Declaring Additional Outputs: the SideEffect
Function

168

 action='./build --log logfile.txt $SOURCE $TARGET'
)
env.Command(
 target='file2.out',
 source='file2.in',
 action='./build --log logfile.txt $SOURCE $TARGET'
)

This can cause problems when running the build in parallel if SCons decides to update both targets by running both
program invocations at the same time. The multiple program invocations may interfere with each other writing to the
common log file, leading at best to intermixed output in the log file, and at worst to an actual failed build (on a system
like Windows, for example, where only one process at a time can open the log file for writing).

We can make sure that SCons does not run these build commands at the same time by using the SideEffect function
to specify that updating the logfile.txt file is a side effect of building the specified file1 and file2 target files:

env = Environment()
f1 = env.Command(
 target='file1.out',
 source='file1.in',
 action='./build --log logfile.txt $SOURCE $TARGET'
)
f2 = env.Command(
 target='file2.out',
 source='file2.in',
 action='./build --log logfile.txt $SOURCE $TARGET'
)
env.SideEffect('logfile.txt', f1 + f2)

This makes sure the the two ./build steps are run sequentially, even with the --jobs=2 in the command line:

% scons -Q --jobs=2
./build --log logfile.txt file1.in file1.out
./build --log logfile.txt file2.in file2.out

The SideEffect function can be called multiple times for the same side-effect file. In fact, the name used as a
SideEffect does not even need to actually exist as a file on disk - SCons will still make sure that the relevant
targets will be executed sequentially, not in parallel. The side effect is actually a pseudo-target, and SCons mainly
cares whether nodes are listed as depending on it, not about its contents.

env = Environment()
f1 = env.Command('file1.out', [], action='echo >$TARGET data1')
env.SideEffect('not_really_updated', f1)
f2 = env.Command('file2.out', [], action='echo >$TARGET data2')
env.SideEffect('not_really_updated', f2)

% scons -Q --jobs=2
echo > file1.out data1
echo > file2.out data2

Virtual environments (virtualenvs)

169

26.9. Virtual environments (virtualenvs)
Virtualenv is a tool to create isolated Python environments. A python application (such as SCons) may be executed
within an activated virtualenv. The activation of virtualenv modifies current environment by defining some virtualenv-
specific variables and modifying search PATH, such that executables installed within virtualenv's home directory are
preferred over the ones installed outside of it.

Normally, SCons uses hard-coded PATH when searching for external executables, so it always picks-up executables
from these pre-defined locations. This applies also to python interpreter, which is invoked by some custom SCons
tools or test suites. This means, when running SCons in a virtualenv, an eventual invocation of python interpreter from
SCons script will most probably jump out of virtualenv and execute python executable found in hard-coded SCons
PATH, not the one which is executing SCons. Some users may consider this as an inconsistency.

This issue may be overcome by using the --enable-virtualenv option. The option automatically
imports virtualenv-related environment variables to all created construction environment env['ENV'],
and modifies SCons PATH appropriately to prefer virtualenv's executables. Setting environment variable
SCONS_ENABLE_VIRTUALENV=1 will have same effect. If virtualenv support is enabled system-vide by the
environment variable, it may be suppressed with the --ignore-virtualenv option.

Inside of SConscript, a global function Virtualenv is available. It returns a path to virtualenv's home directory,
or None if scons is not running from virtualenv. Note that this function returns a path even if scons is run from an
unactivated virtualenv.

27 Using SCons with other
build tools

Sometimes a project needs to interact with other projects in various ways. For example, many open source projects
make use of components from other open source projects, and want to use those in their released form, not recode their
builds into SCons. As another example, sometimes the flexibility and power of SCons is useful for managing the overall
project, but developers might like faster incremental builds when making small changes by using a different tool.

This chapter shows some techniques for interacting with other projects and tools effectively from within SCons.

27.1. Creating a Compilation Database
Tooling to perform analysis and modification of source code often needs to know not only the source code itself, but
also how it will be compiled, as the compilation line affects the behavior of macros, includes, etc. SCons has a record
of this information once it has run, in the form of Actions associated with the sources, and can emit this information
so tools can use it.

The Clang project has defined a JSON Compilation Database. This database is in common use as input into Clang tools
and many IDEs and editors as well. See JSON Compilation Database Format Specification [https://clang.llvm.org/
docs/JSONCompilationDatabase.html] for complete information. SCons can emit a compilation database in this format
by enabling the compilation_db tool and calling the CompilationDatabase builder (available since scons
4.0).

The compilation database can be populated with source and output files either with paths relative to the top of the build,
or using absolute paths. This is controlled by COMPILATIONDB_USE_ABSPATH=(True|False) which defaults
to False. The entries in this file can be filtered by using COMPILATIONDB_PATH_FILTER='pattern' where
the filter pattern is a string following the Python fnmatch [https://docs.python.org/3/library/fnmatch.html] syntax.
This filtering can be used for outputting different build variants to different compilation database files.

The following example illustrates generating a compilation database containing absolute paths:

env = Environment(COMPILATIONDB_USE_ABSPATH=True)
env.Tool('compilation_db')
env.CompilationDatabase()
env.Program('hello.c')

% scons -Q

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://docs.python.org/3/library/fnmatch.html
https://docs.python.org/3/library/fnmatch.html

Creating a Compilation Database

171

Building compilation database compile_commands.json
cc -o hello.o -c hello.c
cc -o hello hello.o

compile_commands.json contains:

[
 {
 "command": "gcc -o hello.o -c hello.c",
 "directory": "/home/user/sandbox",
 "file": "/home/user/sandbox/hello.c",
 "output": "/home/user/sandbox/hello.o"
 }
]

Notice that the generated database contains only an entry for the hello.c/hello.o pairing, and nothing for the
generation of the final executable hello - the transformation of hello.o to hello does not have any information
that affects interpretation of the source code, so it is not interesting to the compilation database.

Although it can be a little surprising at first glance, a compilation database target is, like any other target, subject to
scons target selection rules. This means if you set a default target (that does not include the compilation database),
or use command-line targets, it might not be selected for building. This can actually be an advantage, since you don't
necessarily want to regenerate the compilation database every build. The following example shows selecting relative
paths (the default) for output and source, and also giving a non-default name to the database. In order to be able to
generate the database separately from building, an alias is set referring to the database, which can then be used as a
target - here we are only building the compilation database target, not the code.

env = Environment()
env.Tool('compilation_db')
cdb = env.CompilationDatabase('compile_database.json')
Alias('cdb', cdb)
env.Program('test_main.c')

% scons -Q cdb
Building compilation database compile_database.json

compile_database.json contains:

[
 {
 "command": "gcc -o test_main.o -c test_main.c",
 "directory": "/home/user/sandbox",
 "file": "test_main.c",
 "output": "test_main.o"
 }
]

The following (incomplete) example shows using filtering to separate build variants. In the case of using variants, you
want different compilation databases for each, since the build parameters differ, so the code analysis needs to see the

Ninja Build Generator

172

correct build lines for the 32-bit build and 64-bit build hinted at here. For simplicity of presentation, the example omits
the setup details of the variant directories:

env = Environment()
env.Tool("compilation_db")

env1 = env.Clone()
env1["COMPILATIONDB_PATH_FILTER"] = "build/linux32/*"
env1.CompilationDatabase("compile_commands-linux32.json")

env2 = env.Clone()
env2["COMPILATIONDB_PATH_FILTER"] = "build/linux64/*"
env2.CompilationDatabase('compile_commands-linux64.json')

compile_commands-linux32.json contains:

[
 {
 "command": "gcc -o hello.o -c hello.c",
 "directory": "/home/mats/github/scons/exp/compdb",
 "file": "hello.c",
 "output": "hello.o"
 }
]

compile_commands-linux64.json contains:

[
 {
 "command": "gcc -m64 -o build/linux64/test_main.o -c test_main.c",
 "directory": "/home/user/sandbox",
 "file": "test_main.c",
 "output": "build/linux64/test_main.o"
 }
]

27.2. Ninja Build Generator
Note

This is an experimental new feature. It is subject to change and/or removal without a depreciation cycle.

Loading the ninja tool into SCons will make significant changes in SCons' normal functioning.

• SCons will no longer execute any commands directly and will only create the build.ninja and run
ninja.

• Any targets specified on the command line will be passed along to ninja

Ninja Build Generator

173

To enable this feature you'll need to use one of the following:

On the command line --experimental=ninja

Or in your SConstruct
SetOption('experimental', 'ninja')

Ninja is a small build system that tries to be fast by not making decisions. SCons can at times be slow because it makes
lots of decisions to carry out its goal of "correctness". The two tools can be paired to benefit some build scenarios:
by using the ninja tool, SCons can generate the build file ninja uses (basically doing the decision-making ahead
of time and recording that for ninja), and can invoke ninja to perform a build. For situations where relationships are
not changing, such as edit/build/debug iterations, this works fine and should provide considerable speedups for more
complex builds. The implication is if there are larger changes taking place, ninja is not as appropriate - but you can
always use SCons to regenerate the build file. You are NOT advised to use this for production builds.

To use the ninja tool you'll need to first install the Python ninja package, as the tool depends on being able to do
an import of the package. This can be done via:

In a virtualenv, or "python" is the native executable:
python -m pip install ninja

Windows using Python launcher:
py -m pip install ninja

Anaconda:
conda install -c conda-forge ninja

Reminder that like any non-default tool, you need to initialize it before use (e.g. env.Tool('ninja')).

It is not expected that the Ninja builder will work for all builds at this point. It is still under active development.
If you find that your build doesn't work with ninja please bring this to the users mailing list [https://pairlist4.pair.net/
mailman/listinfo/scons-users] or #scons-help [https://discord.gg/bXVpWAy] channel on our Discord server.

Specifically if your build has many (or even any) Python function actions you may find that the ninja build will be
slower as it will run ninja, which will then run SCons for each target created by a Python action. To alleviate some
of these, especially those Python based actions built into SCons there is special logic to implement those actions via
shell commands in the ninja build file.

When ninja runs the generated ninja build file, ninja will launch scons as a daemon and feed commands to that scons
process which ninja is unable to build directly. This daemon will stay alive until explicitly killed, or it times out. The
timeout is set by $NINJA_SCONS_DAEMON_KEEP_ALIVE .

The daemon will be restarted if any SConscript file(s) change or the build changes in a way that ninja determines
it needs to regenerate the build.ninja file

See:

Ninja Build System [https://ninja-build.org/]
Ninja File Format Specification [https://ninja-build.org/manual.html#ref_ninja_file]

https://pairlist4.pair.net/mailman/listinfo/scons-users
https://pairlist4.pair.net/mailman/listinfo/scons-users
https://pairlist4.pair.net/mailman/listinfo/scons-users
https://discord.gg/bXVpWAy
https://discord.gg/bXVpWAy
https://ninja-build.org/
https://ninja-build.org/
https://ninja-build.org/manual.html#ref_ninja_file
https://ninja-build.org/manual.html#ref_ninja_file

28 Troubleshooting

The experience of configuring any software build tool to build a large code base usually, at some point, involves trying
to figure out why the tool is behaving a certain way, and how to get it to behave the way you want. SCons is no different.
This appendix contains a number of different ways in which you can get some additional insight into SCons' behavior.

Note that we're always interested in trying to improve how you can troubleshoot configuration problems. If you run
into a problem that has you scratching your head, and which there just doesn't seem to be a good way to debug, odds
are pretty good that someone else will run into the same problem, too. If so, please let the SCons development team
know using the contact information at https://scons.org/contact.html so that we can use your feedback to try to come
up with a better way to help you, and others, get the necessary insight into SCons behavior to help identify and fix
configuration issues.

28.1. Why is That Target Being Rebuilt? the --
debug=explain Option
Let's look at a simple example of a misconfigured build that causes a target to be rebuilt every time SCons is run:

Intentionally misspell the output file name in the
command used to create the file:
Command('file.out', 'file.in', 'cp $SOURCE file.oout')

(Note to Windows users: The POSIX cp command copies the first file named on the command line to the second file.
In our example, it copies the file.in file to the file.out file.)

Now if we run SCons multiple times on this example, we see that it re-runs the cp command every time:

% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout

In this example, the underlying cause is obvious: we've intentionally misspelled the output file name in the cp
command, so the command doesn't actually build the file.out file that we've told SCons to expect. But if the

https://scons.org/contact.html

Why is That Target Being Rebuilt? the --
debug=explain Option

175

problem weren't obvious, it would be helpful to specify the --debug=explain option on the command line to have
SCons tell us very specifically why it's decided to rebuild the target:

% scons -Q --debug=explain
scons: building `file.out' because it doesn't exist
cp file.in file.oout

If this had been a more complicated example involving a lot of build output, having SCons tell us that it's trying to
rebuild the target file because it doesn't exist would be an important clue that something was wrong with the command
that we invoked to build it.

Note that you can also use --warn=target-not-built which checks whether or not expected targets exist after
a build rule is executed.

% scons -Q --warn=target-not-built
cp file.in file.oout

scons: warning: Cannot find target file.out after building
File "/Users/bdbaddog/devel/scons/git/as_scons/scripts/scons.py", line 97, in <module>

The --debug=explain option also comes in handy to help figure out what input file changed. Given a simple
configuration that builds a program from three source files, changing one of the source files and rebuilding with the
--debug=explain option shows very specifically why SCons rebuilds the files that it does:

% scons -Q
cc -o file1.o -c file1.c
cc -o file2.o -c file2.c
cc -o file3.o -c file3.c
cc -o prog file1.o file2.o file3.o
% [CHANGE THE CONTENTS OF file2.c]
% scons -Q --debug=explain
scons: rebuilding `file2.o' because `file2.c' changed
cc -o file2.o -c file2.c
scons: rebuilding `prog' because `file2.o' changed
cc -o prog file1.o file2.o file3.o

This becomes even more helpful in identifying when a file is rebuilt due to a change in an implicit dependency, such as
an incuded .h file. If the file1.c and file3.c files in our example both included a hello.h file, then changing
that included file and re-running SCons with the --debug=explain option will pinpoint that it's the change to the
included file that starts the chain of rebuilds:

% scons -Q
cc -o file1.o -c -I. file1.c
cc -o file2.o -c -I. file2.c
cc -o file3.o -c -I. file3.c
cc -o prog file1.o file2.o file3.o
% [CHANGE THE CONTENTS OF hello.h]
% scons -Q --debug=explain
scons: rebuilding `file1.o' because `hello.h' changed
cc -o file1.o -c -I. file1.c
scons: rebuilding `file3.o' because `hello.h' changed
cc -o file3.o -c -I. file3.c
scons: rebuilding `prog' because:
 `file1.o' changed
 `file3.o' changed
cc -o prog file1.o file2.o file3.o

What's in That Construction Environment? the Dump
Method

176

(Note that the --debug=explain option will only tell you why SCons decided to rebuild necessary targets. It does
not tell you what files it examined when deciding not to rebuild a target file, which is often a more valuable question
to answer.)

28.2. What's in That Construction
Environment? the Dump Method
When you create a construction environment, SCons populates it with construction variables that are set up for various
compilers, linkers and utilities that it finds on your system. Although this is usually helpful and what you want, it might
be frustrating if SCons doesn't set certain variables that you expect to be set. In situations like this, it's sometimes helpful
to use the construction environment Dump method to print all or some of the construction variables. Note that the
Dump method returns the representation of the variables in the environment for you to print (or otherwise manipulate):

env = Environment()
print(env.Dump())

On a POSIX system with gcc installed, this might generate:

% scons
scons: Reading SConscript files ...
{ 'BUILDERS': { '_InternalInstall': <function InstallBuilderWrapper at 0x700000>,
 '_InternalInstallAs': <function InstallAsBuilderWrapper at 0x700000>,
 '_InternalInstallVersionedLib': <function InstallVersionedBuilderWrapper at 0x700000>},
 'CONFIGUREDIR': '#/.sconf_temp',
 'CONFIGURELOG': '#/config.log',
 'CPPSUFFIXES': ['.c',
 '.C',
 '.cxx',
 '.cpp',
 '.c++',
 '.cc',
 '.h',
 '.H',
 '.hxx',
 '.hpp',
 '.hh',
 '.F',
 '.fpp',
 '.FPP',
 '.m',
 '.mm',
 '.S',
 '.spp',
 '.SPP',
 '.sx'],
 'DSUFFIXES': ['.d'],
 'Dir': <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
 'Dirs': <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
 'ENV': {'PATH': '/usr/local/bin:/opt/bin:/bin:/usr/bin:/snap/bin'},
 'ESCAPE': <function escape at 0x700000>,

What's in That Construction Environment? the Dump
Method

177

 'File': <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
 'HOST_ARCH': 'arm64',
 'HOST_OS': 'posix',
 'IDLSUFFIXES': ['.idl', '.IDL'],
 'INSTALL': <function copyFunc at 0x700000>,
 'INSTALLVERSIONEDLIB': <function copyFuncVersionedLib at 0x700000>,
 'LIBLITERALPREFIX': '',
 'LIBPREFIX': 'lib',
 'LIBPREFIXES': ['$LIBPREFIX'],
 'LIBSUFFIX': '.a',
 'LIBSUFFIXES': ['$LIBSUFFIX', '$SHLIBSUFFIX'],
 'MAXLINELENGTH': 128072,
 'OBJPREFIX': '',
 'OBJSUFFIX': '.o',
 'PLATFORM': 'posix',
 'PROGPREFIX': '',
 'PROGSUFFIX': '',
 'PSPAWN': <function piped_env_spawn at 0x700000>,
 'RDirs': <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
 'SCANNERS': [<SCons.Scanner.ScannerBase object at 0x700000>],
 'SHELL': 'sh',
 'SHLIBPREFIX': '$LIBPREFIX',
 'SHLIBSUFFIX': '.so',
 'SHOBJPREFIX': '$OBJPREFIX',
 'SHOBJSUFFIX': '$OBJSUFFIX',
 'SPAWN': <function subprocess_spawn at 0x700000>,
 'TARGET_ARCH': None,
 'TARGET_OS': None,
 'TEMPFILE': <class 'SCons.Platform.TempFileMunge'>,
 'TEMPFILEARGESCFUNC': <function quote_spaces at 0x700000>,
 'TEMPFILEARGJOIN': ' ',
 'TEMPFILEPREFIX': '@',
 'TOOLS': ['install'],
 '_CPPDEFFLAGS': '${_defines(CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, __env__, '
 'TARGET, SOURCE)}',
 '_CPPINCFLAGS': '${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, '
 'TARGET, SOURCE, affect_signature=False)}',
 '_LIBDIRFLAGS': '${_concat(LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, __env__, '
 'RDirs, TARGET, SOURCE, affect_signature=False)}',
 '_LIBFLAGS': '${_concat(LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, __env__)}',
 '__DRPATH': '$_DRPATH',
 '__DSHLIBVERSIONFLAGS': '${__libversionflags(__env__,"DSHLIBVERSION","_DSHLIBVERSIONFLAGS")}',
 '__LDMODULEVERSIONFLAGS': '${__libversionflags(__env__,"LDMODULEVERSION","_LDMODULEVERSIONFLAGS")}',
 '__RPATH': '$_RPATH',
 '__SHLIBVERSIONFLAGS': '${__libversionflags(__env__,"SHLIBVERSION","_SHLIBVERSIONFLAGS")}',
 '__lib_either_version_flag': <function __lib_either_version_flag at 0x700000>,
 '__libversionflags': <function __libversionflags at 0x700000>,
 '_concat': <function _concat at 0x700000>,
 '_defines': <function _defines at 0x700000>,
 '_stripixes': <function _stripixes at 0x700000>}
scons: done reading SConscript files.
scons: Building targets ...
scons: `.' is up to date.
scons: done building targets.

What's in That Construction Environment? the Dump
Method

178

On a Windows system with Microsoft Visual C++ the output might look like:

C:\>scons
scons: Reading SConscript files ...
{ 'BUILDERS': { 'Object': <SCons.Builder.CompositeBuilder object at 0x700000>,
 'PCH': <SCons.Builder.BuilderBase object at 0x700000>,
 'RES': <SCons.Builder.BuilderBase object at 0x700000>,
 'SharedObject': <SCons.Builder.CompositeBuilder object at 0x700000>,
 'StaticObject': <SCons.Builder.CompositeBuilder object at 0x700000>,
 '_InternalInstall': <function InstallBuilderWrapper at 0x700000>,
 '_InternalInstallAs': <function InstallAsBuilderWrapper at 0x700000>,
 '_InternalInstallVersionedLib': <function InstallVersionedBuilderWrapper at 0x700000>},
 'CC': 'cl',
 'CCCOM': <SCons.Action.FunctionAction object at 0x700000>,
 'CCDEPFLAGS': '/showIncludes',
 'CCFLAGS': ['/nologo'],
 'CCPCHFLAGS': <function gen_ccpchflags at 0x700000>,
 'CCPDBFLAGS': ['${(PDB and "/Z7") or ""}'],
 'CFILESUFFIX': '.c',
 'CFLAGS': [],
 'CONFIGUREDIR': '#/.sconf_temp',
 'CONFIGURELOG': '#/config.log',
 'CPPDEFPREFIX': '/D',
 'CPPDEFSUFFIX': '',
 'CPPSUFFIXES': ['.c',
 '.C',
 '.cxx',
 '.cpp',
 '.c++',
 '.cc',
 '.h',
 '.H',
 '.hxx',
 '.hpp',
 '.hh',
 '.F',
 '.fpp',
 '.FPP',
 '.m',
 '.mm',
 '.S',
 '.spp',
 '.SPP',
 '.sx'],
 'CXX': '$CC',
 'CXXCOM': '${TEMPFILE("$CXX $_MSVC_OUTPUT_FLAG /c $CHANGED_SOURCES $CXXFLAGS '
 '$CCFLAGS $_CCCOMCOM","$CXXCOMSTR")}',
 'CXXFILESUFFIX': '.cc',
 'CXXFLAGS': ['$(', '/TP', '$)'],
 'DSUFFIXES': ['.d'],
 'Dir': <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
 'Dirs': <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
 'ENV': { 'PATH': 'C:\\WINDOWS\\System32',
 'PATHEXT': '.COM;.EXE;.BAT;.CMD',

What's in That Construction Environment? the Dump
Method

179

 'SystemRoot': 'C:\\WINDOWS'},
 'ESCAPE': <function escape at 0x700000>,
 'File': <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
 'HOST_ARCH': 'arm64',
 'HOST_OS': 'win32',
 'IDLSUFFIXES': ['.idl', '.IDL'],
 'INCPREFIX': '/I',
 'INCSUFFIX': '',
 'INSTALL': <function copyFunc at 0x700000>,
 'INSTALLVERSIONEDLIB': <function copyFuncVersionedLib at 0x700000>,
 'LEXUNISTD': ['--nounistd'],
 'LIBLITERALPREFIX': '',
 'LIBPREFIX': '',
 'LIBPREFIXES': ['$LIBPREFIX'],
 'LIBSUFFIX': '.lib',
 'LIBSUFFIXES': ['$LIBSUFFIX'],
 'MAXLINELENGTH': 2048,
 'MSVC_SETUP_RUN': True,
 'NINJA_DEPFILE_PARSE_FORMAT': 'msvc',
 'OBJPREFIX': '',
 'OBJSUFFIX': '.obj',
 'PCHCOM': 'CXX /Fo{TARGETS[1]} $CXXFLAGS $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS '
 '$_CPPINCFLAGS /c $SOURCES /Yc$PCHSTOP /Fp${TARGETS[0]} '
 '$CCPDBFLAGS $PCHPDBFLAGS',
 'PCHPDBFLAGS': ['${(PDB and "/Yd") or ""}'],
 'PLATFORM': 'win32',
 'PROGPREFIX': '',
 'PROGSUFFIX': '.exe',
 'PSPAWN': <function piped_spawn at 0x700000>,
 'RC': 'rc',
 'RCCOM': <SCons.Action.FunctionAction object at 0x700000>,
 'RCFLAGS': ['/nologo'],
 'RCSUFFIXES': ['.rc', '.rc2'],
 'RDirs': <SCons.Defaults.Variable_Method_Caller object at 0x700000>,
 'SCANNERS': [<SCons.Scanner.ScannerBase object at 0x700000>],
 'SHCC': '$CC',
 'SHCCCOM': <SCons.Action.FunctionAction object at 0x700000>,
 'SHCCFLAGS': ['$CCFLAGS'],
 'SHCFLAGS': ['$CFLAGS'],
 'SHCXX': '$CXX',
 'SHCXXCOM': '${TEMPFILE("$SHCXX $_MSVC_OUTPUT_FLAG /c $CHANGED_SOURCES '
 '$SHCXXFLAGS $SHCCFLAGS $_CCCOMCOM","$SHCXXCOMSTR")}',
 'SHCXXFLAGS': ['$CXXFLAGS'],
 'SHELL': 'command',
 'SHLIBPREFIX': '',
 'SHLIBSUFFIX': '.dll',
 'SHOBJPREFIX': '$OBJPREFIX',
 'SHOBJSUFFIX': '$OBJSUFFIX',
 'SPAWN': <function spawn at 0x700000>,
 'STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME': 1,
 'TARGET_ARCH': None,
 'TARGET_OS': None,
 'TEMPFILE': <class 'SCons.Platform.TempFileMunge'>,
 'TEMPFILEARGESCFUNC': <function quote_spaces at 0x700000>,

What's in That Construction Environment? the Dump
Method

180

 'TEMPFILEARGJOIN': '\n',
 'TEMPFILEPREFIX': '@',
 'TOOLS': ['msvc', 'install'],
 '_CCCOMCOM': '$CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS $CCPCHFLAGS $CCPDBFLAGS',
 '_CPPDEFFLAGS': '${_defines(CPPDEFPREFIX, CPPDEFINES, CPPDEFSUFFIX, __env__, '
 'TARGET, SOURCE)}',
 '_CPPINCFLAGS': '${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, '
 'TARGET, SOURCE, affect_signature=False)}',
 '_LIBDIRFLAGS': '${_concat(LIBDIRPREFIX, LIBPATH, LIBDIRSUFFIX, __env__, '
 'RDirs, TARGET, SOURCE, affect_signature=False)}',
 '_LIBFLAGS': '${_concat(LIBLINKPREFIX, LIBS, LIBLINKSUFFIX, __env__)}',
 '_MSVC_OUTPUT_FLAG': <function msvc_output_flag at 0x700000>,
 '__DSHLIBVERSIONFLAGS': '${__libversionflags(__env__,"DSHLIBVERSION","_DSHLIBVERSIONFLAGS")}',
 '__LDMODULEVERSIONFLAGS': '${__libversionflags(__env__,"LDMODULEVERSION","_LDMODULEVERSIONFLAGS")}',
 '__SHLIBVERSIONFLAGS': '${__libversionflags(__env__,"SHLIBVERSION","_SHLIBVERSIONFLAGS")}',
 '__lib_either_version_flag': <function __lib_either_version_flag at 0x700000>,
 '__libversionflags': <function __libversionflags at 0x700000>,
 '_concat': <function _concat at 0x700000>,
 '_defines': <function _defines at 0x700000>,
 '_stripixes': <function _stripixes at 0x700000>}
scons: done reading SConscript files.
scons: Building targets ...
scons: `.' is up to date.
scons: done building targets.

The construction environments in these examples have actually been restricted to just gcc and Microsoft Visual C++
respectively. In a real-life situation, the construction environments will likely contain a great many more variables. Also
note that we've massaged the example output above to make the memory address of all objects a constant 0x700000.
In reality, you would see a different hexadecimal number for each object.

To make it easier to see just what you're interested in, the Dump method allows you to specify a specific construction
variable that you want to disply. For example, it's not unusual to want to verify the external environment used to
execute build commands, to make sure that the PATH and other environment variables are set up the way they should
be. You can do this as follows:

env = Environment()
print(env.Dump('ENV'))

Which might display the following when executed on a POSIX system:

% scons
scons: Reading SConscript files ...
{'ENV': {'PATH': '/usr/local/bin:/opt/bin:/bin:/usr/bin:/snap/bin'}}
scons: done reading SConscript files.
scons: Building targets ...
scons: `.' is up to date.
scons: done building targets.

And the following when executed on a Windows system:

C:\>scons
scons: Reading SConscript files ...
{ 'ENV': { 'PATH': 'C:\\WINDOWS\\System32:/usr/bin',

What Dependencies Does SCons Know About? the --
tree Option

181

 'PATHEXT': '.COM;.EXE;.BAT;.CMD',
 'SystemRoot': 'C:\\WINDOWS'}}
scons: done reading SConscript files.
scons: Building targets ...
scons: `.' is up to date.
scons: done building targets.

28.3. What Dependencies Does SCons Know
About? the --tree Option
Sometimes the best way to try to figure out what SCons is doing is simply to take a look at the dependency graph that
it constructs based on your SConscript files. The --tree option will display all or part of the SCons dependency
graph in an "ASCII art" graphical format that shows the dependency hierarchy.

For example, given the following input SConstruct file:

env = Environment(CPPPATH = ['.'])
env.Program('prog', ['f1.c', 'f2.c', 'f3.c'])

Running SCons with the --tree=all option yields:

% scons -Q --tree=all
cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
cc -o prog f1.o f2.o f3.o
+-.
 +-SConstruct
 +-f1.c
 +-f1.o
 | +-f1.c
 | +-inc.h
 +-f2.c
 +-f2.o
 | +-f2.c
 | +-inc.h
 +-f3.c
 +-f3.o
 | +-f3.c
 | +-inc.h
 +-inc.h
 +-prog
 +-f1.o
 | +-f1.c
 | +-inc.h
 +-f2.o
 | +-f2.c
 | +-inc.h
 +-f3.o
 +-f3.c
 +-inc.h

What Dependencies Does SCons Know About? the --
tree Option

182

The tree will also be printed when the -n (no execute) option is used, which allows you to examine the dependency
graph for a configuration without actually rebuilding anything in the tree.

By default SCons uses "ASCII art" to draw the tree. It is possible to use line-drawing characters (Unicode calls these
Box Drawing) to make a nicer display. To do this, add the linedraw qualifier:

% scons -Q --tree=all,linedraw
cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
cc -o prog f1.o f2.o f3.o
###.
 ##SConstruct
 ##f1.c
 ###f1.o
 # ##f1.c
 # ##inc.h
 ##f2.c
 ###f2.o
 # ##f2.c
 # ##inc.h
 ##f3.c
 ###f3.o
 # ##f3.c
 # ##inc.h
 ##inc.h
 ###prog
 ###f1.o
 # ##f1.c
 # ##inc.h
 ###f2.o
 # ##f2.c
 # ##inc.h
 ###f3.o
 ##f3.c
 ##inc.h

The --tree option only prints the dependency graph for the specified targets (or the default target(s) if none are
specified on the command line). So if you specify a target like f2.o on the command line, the --tree option will
only print the dependency graph for that file:

% scons -Q --tree=all f2.o
cc -o f2.o -c -I. f2.c
+-f2.o
 +-f2.c
 +-inc.h

This is, of course, useful for restricting the output from a very large build configuration to just a portion in which
you're interested. Multiple targets are fine, in which case a tree will be printed for each specified target:

% scons -Q --tree=all f1.o f3.o
cc -o f1.o -c -I. f1.c
+-f1.o
 +-f1.c
 +-inc.h

What Dependencies Does SCons Know About? the --
tree Option

183

cc -o f3.o -c -I. f3.c
+-f3.o
 +-f3.c
 +-inc.h

The status argument may be used to tell SCons to print status information about each file in the dependency graph:

% scons -Q --tree=status
cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
cc -o prog f1.o f2.o f3.o
 E = exists
 R = exists in repository only
 b = implicit builder
 B = explicit builder
 S = side effect
 P = precious
 A = always build
 C = current
 N = no clean
 H = no cache

[E b]+-.
[E C] +-SConstruct
[E C] +-f1.c
[E B C] +-f1.o
[E C] | +-f1.c
[E C] | +-inc.h
[E C] +-f2.c
[E B C] +-f2.o
[E C] | +-f2.c
[E C] | +-inc.h
[E C] +-f3.c
[E B C] +-f3.o
[E C] | +-f3.c
[E C] | +-inc.h
[E C] +-inc.h
[E B C] +-prog
[E B C] +-f1.o
[E C] | +-f1.c
[E C] | +-inc.h
[E B C] +-f2.o
[E C] | +-f2.c
[E C] | +-inc.h
[E B C] +-f3.o
[E C] +-f3.c
[E C] +-inc.h

Note that --tree=all,status is equivalent; the all is assumed if only status is present. As an alternative
to all, you can specify --tree=derived to have SCons only print derived targets in the tree output, skipping
source files (like .c and .h files):

% scons -Q --tree=derived
cc -o f1.o -c -I. f1.c

What Dependencies Does SCons Know About? the --
tree Option

184

cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
cc -o prog f1.o f2.o f3.o
+-.
 +-f1.o
 +-f2.o
 +-f3.o
 +-prog
 +-f1.o
 +-f2.o
 +-f3.o

You can use the status modifier with derived as well:

% scons -Q --tree=derived,status
cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
cc -o prog f1.o f2.o f3.o
 E = exists
 R = exists in repository only
 b = implicit builder
 B = explicit builder
 S = side effect
 P = precious
 A = always build
 C = current
 N = no clean
 H = no cache

[E b]+-.
[E B C] +-f1.o
[E B C] +-f2.o
[E B C] +-f3.o
[E B C] +-prog
[E B C] +-f1.o
[E B C] +-f2.o
[E B C] +-f3.o

Note that the order of the --tree= arguments doesn't matter; --tree=status,derived is completely
equivalent.

The default behavior of the --tree option is to repeat all of the dependencies each time the library dependency
(or any other dependency file) is encountered in the tree. If certain target files share other target files, such as two
programs that use the same library:

env = Environment(CPPPATH = ['.'],
 LIBS = ['foo'],
 LIBPATH = ['.'])
env.Library('foo', ['f1.c', 'f2.c', 'f3.c'])
env.Program('prog1.c')
env.Program('prog2.c')

Then there can be a lot of repetition in the --tree= output:

What Dependencies Does SCons Know About? the --
tree Option

185

% scons -Q --tree=all
cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a
cc -o prog1.o -c -I. prog1.c
cc -o prog1 prog1.o -L. -lfoo
cc -o prog2.o -c -I. prog2.c
cc -o prog2 prog2.o -L. -lfoo
+-.
 +-SConstruct
 +-f1.c
 +-f1.o
 | +-f1.c
 | +-inc.h
 +-f2.c
 +-f2.o
 | +-f2.c
 | +-inc.h
 +-f3.c
 +-f3.o
 | +-f3.c
 | +-inc.h
 +-inc.h
 +-libfoo.a
 | +-f1.o
 | | +-f1.c
 | | +-inc.h
 | +-f2.o
 | | +-f2.c
 | | +-inc.h
 | +-f3.o
 | +-f3.c
 | +-inc.h
 +-prog1
 | +-prog1.o
 | | +-prog1.c
 | | +-inc.h
 | +-libfoo.a
 | +-f1.o
 | | +-f1.c
 | | +-inc.h
 | +-f2.o
 | | +-f2.c
 | | +-inc.h
 | +-f3.o
 | +-f3.c
 | +-inc.h
 +-prog1.c
 +-prog1.o
 | +-prog1.c
 | +-inc.h
 +-prog2

What Dependencies Does SCons Know About? the --
tree Option

186

 | +-prog2.o
 | | +-prog2.c
 | | +-inc.h
 | +-libfoo.a
 | +-f1.o
 | | +-f1.c
 | | +-inc.h
 | +-f2.o
 | | +-f2.c
 | | +-inc.h
 | +-f3.o
 | +-f3.c
 | +-inc.h
 +-prog2.c
 +-prog2.o
 +-prog2.c
 +-inc.h

In a large configuration with many internal libraries and include files, this can very quickly lead to huge output trees.
To help make this more manageable, a prune modifier may be added to the option list, in which case SCons will
print the name of a target that has already been visited during the tree-printing in square brackets ([]) as an indication
that the dependencies of the target file may be found by looking farther up the tree:

% scons -Q --tree=prune
cc -o f1.o -c -I. f1.c
cc -o f2.o -c -I. f2.c
cc -o f3.o -c -I. f3.c
ar rc libfoo.a f1.o f2.o f3.o
ranlib libfoo.a
cc -o prog1.o -c -I. prog1.c
cc -o prog1 prog1.o -L. -lfoo
cc -o prog2.o -c -I. prog2.c
cc -o prog2 prog2.o -L. -lfoo
+-.
 +-SConstruct
 +-f1.c
 +-f1.o
 | +-f1.c
 | +-inc.h
 +-f2.c
 +-f2.o
 | +-f2.c
 | +-inc.h
 +-f3.c
 +-f3.o
 | +-f3.c
 | +-inc.h
 +-inc.h
 +-libfoo.a
 | +-[f1.o]
 | +-[f2.o]
 | +-[f3.o]
 +-prog1
 | +-prog1.o

How is SCons Constructing the Command Lines It
Executes? the --debug=presub Option

187

 | | +-prog1.c
 | | +-inc.h
 | +-[libfoo.a]
 +-prog1.c
 +-[prog1.o]
 +-prog2
 | +-prog2.o
 | | +-prog2.c
 | | +-inc.h
 | +-[libfoo.a]
 +-prog2.c
 +-[prog2.o]

Like the status keyword, the prune argument by itself is equivalent to --tree=all,prune.

28.4. How is SCons Constructing the
Command Lines It Executes? the --
debug=presub Option
Sometimes the command lines that SCons executes don't come out looking as you expect. In this case it may be useful to
look at the strings before SCons performs substitution on them. This can be done with the --debug=presub option:

% scons -Q --debug=presub
Building prog.o with action:
 $CC -o $TARGET -c $CFLAGS $CCFLAGS $_CCOMCOM $SOURCES
cc -o prog.o -c -I. prog.c
Building prog with action:
 $SMART_LINKCOM
cc -o prog prog.o

28.5. Where is SCons Searching for Libraries?
the --debug=findlibs Option
To get some insight into what library names SCons is searching for, and in which directories it is searching, Use the
--debug=findlibs option. Given the following input SConstruct file:

env = Environment(LIBPATH = ['libs1', 'libs2'])
env.Program('prog.c', LIBS=['foo', 'bar'])

And the libraries libfoo.a and libbar.a in libs1 and libs2, respectively, use of the --debug=findlibs
option yields:

% scons -Q --debug=findlibs
 findlibs: looking for 'libfoo.a' in 'libs1' ...
 findlibs: ... FOUND 'libfoo.a' in 'libs1'
 findlibs: looking for 'libfoo.so' in 'libs1' ...
 findlibs: looking for 'libfoo.so' in 'libs2' ...

Where is SCons Blowing Up? the --
debug=stacktrace Option

188

 findlibs: looking for 'libbar.a' in 'libs1' ...
 findlibs: looking for 'libbar.a' in 'libs2' ...
 findlibs: ... FOUND 'libbar.a' in 'libs2'
 findlibs: looking for 'libbar.so' in 'libs1' ...
 findlibs: looking for 'libbar.so' in 'libs2' ...
cc -o prog.o -c prog.c
cc -o prog prog.o -Llibs1 -Llibs2 -lfoo -lbar

28.6. Where is SCons Blowing Up? the --
debug=stacktrace Option
In general, SCons tries to keep its error messages short and informative. That means we usually try to avoid showing the
stack traces that are familiar to experienced Python programmers, since they usually contain much more information
than is useful to most people.

For example, the following SConstruct file:

Program('prog.c')

Generates the following error if the prog.c file does not exist:

% scons -Q
scons: *** [prog.o] Source `prog.c' not found, needed by target `prog.o'.

In this case, the error is pretty obvious. But if it weren't, and you wanted to try to get more information about the error,
the --debug=stacktrace option would show you exactly where in the SCons source code the problem occurs:

% scons -Q --debug=stacktrace
scons: *** [prog.o] Source `prog.c' not found, needed by target `prog.o'.
scons: internal stack trace:
 File "SCons/Taskmaster/Job.py", line 670, in _work
 task.prepare()
 File "SCons/Script/Main.py", line 208, in prepare
 return SCons.Taskmaster.OutOfDateTask.prepare(self)
 ^^
 File "SCons/Taskmaster/__init__.py", line 195, in prepare
 executor.prepare()
 File "SCons/Executor.py", line 420, in prepare
 raise SCons.Errors.StopError(msg % (s, self.batches[0].targets[0]))

Of course, if you do need to dive into the SCons source code, we'd like to know if, or how, the error messages or
troubleshooting options could have been improved to avoid that. Not everyone has the necessary time or Python skill
to dive into the source code, and we'd like to improve SCons for those people as well...

28.7. How is SCons Making Its Decisions? the
--taskmastertrace Option
The internal SCons subsystem that handles walking the dependency graph and controls the decision-making about
what to rebuild is the Taskmaster. SCons supports a --taskmastertrace option that tells the Taskmaster to
print information about the children (dependencies) of the various Nodes on its walk down the graph, which specific
dependent Nodes are being evaluated, and in what order.

How is SCons Making Its Decisions? the --
taskmastertrace Option

189

The --taskmastertrace option takes as an argument the name of a file in which to put the trace output, with -
(a single hyphen) indicating that the trace messages should be printed to the standard output:

env = Environment(CPPPATH = ['.'])
env.Program('prog.c')

% scons -Q --taskmastertrace=- prog
Job.NewParallel._work(): [Thread:8682049344] Gained exclusive access
Job.NewParallel._work(): [Thread:8682049344] Starting search
Job.NewParallel._work(): [Thread:8682049344] Found 0 completed tasks to process
Job.NewParallel._work(): [Thread:8682049344] Searching for new tasks

Taskmaster: Looking for a node to evaluate
Taskmaster: Considering node <no_state 0 'prog'> and its children:
Taskmaster: <no_state 0 'prog.o'>
Taskmaster: adjusted ref count: <pending 1 'prog'>, child 'prog.o'
Taskmaster: Considering node <no_state 0 'prog.o'> and its children:
Taskmaster: <no_state 0 'prog.c'>
Taskmaster: <no_state 0 'inc.h'>
Taskmaster: adjusted ref count: <pending 1 'prog.o'>, child 'prog.c'
Taskmaster: adjusted ref count: <pending 2 'prog.o'>, child 'inc.h'
Taskmaster: Considering node <no_state 0 'prog.c'> and its children:
Taskmaster: Evaluating <pending 0 'prog.c'>

Task.make_ready_current(): node <pending 0 'prog.c'>
Task.prepare(): node <up_to_date 0 'prog.c'>
Job.NewParallel._work(): [Thread:8682049344] Found internal task
Task.executed_with_callbacks(): node <up_to_date 0 'prog.c'>
Task.postprocess(): node <up_to_date 0 'prog.c'>
Task.postprocess(): removing <up_to_date 0 'prog.c'>
Task.postprocess(): adjusted parent ref count <pending 1 'prog.o'>
Job.NewParallel._work(): [Thread:8682049344] Searching for new tasks

Taskmaster: Looking for a node to evaluate
Taskmaster: Considering node <no_state 0 'inc.h'> and its children:
Taskmaster: Evaluating <pending 0 'inc.h'>

Task.make_ready_current(): node <pending 0 'inc.h'>
Task.prepare(): node <up_to_date 0 'inc.h'>
Job.NewParallel._work(): [Thread:8682049344] Found internal task
Task.executed_with_callbacks(): node <up_to_date 0 'inc.h'>
Task.postprocess(): node <up_to_date 0 'inc.h'>
Task.postprocess(): removing <up_to_date 0 'inc.h'>
Task.postprocess(): adjusted parent ref count <pending 0 'prog.o'>
Job.NewParallel._work(): [Thread:8682049344] Searching for new tasks

Taskmaster: Looking for a node to evaluate
Taskmaster: Considering node <pending 0 'prog.o'> and its children:
Taskmaster: <up_to_date 0 'prog.c'>
Taskmaster: <up_to_date 0 'inc.h'>
Taskmaster: Evaluating <pending 0 'prog.o'>

Watch SCons prepare targets for building: the --
debug=prepare Option

190

Task.make_ready_current(): node <pending 0 'prog.o'>
Task.prepare(): node <executing 0 'prog.o'>
Job.NewParallel._work(): [Thread:8682049344] Found task requiring execution
Job.NewParallel._work(): [Thread:8682049344] Executing task
Task.execute(): node <executing 0 'prog.o'>
cc -o prog.o -c -I. prog.c
Job.NewParallel._work(): [Thread:8682049344] Enqueueing executed task results
Job.NewParallel._work(): [Thread:8682049344] Gained exclusive access
Job.NewParallel._work(): [Thread:8682049344] Starting search
Job.NewParallel._work(): [Thread:8682049344] Found 1 completed tasks to process
Task.executed_with_callbacks(): node <executing 0 'prog.o'>
Task.postprocess(): node <executed 0 'prog.o'>
Task.postprocess(): removing <executed 0 'prog.o'>
Task.postprocess(): adjusted parent ref count <pending 0 'prog'>
Job.NewParallel._work(): [Thread:8682049344] Searching for new tasks

Taskmaster: Looking for a node to evaluate
Taskmaster: Considering node <pending 0 'prog'> and its children:
Taskmaster: <executed 0 'prog.o'>
Taskmaster: Evaluating <pending 0 'prog'>

Task.make_ready_current(): node <pending 0 'prog'>
Task.prepare(): node <executing 0 'prog'>
Job.NewParallel._work(): [Thread:8682049344] Found task requiring execution
Job.NewParallel._work(): [Thread:8682049344] Executing task
Task.execute(): node <executing 0 'prog'>
cc -o prog prog.o
Job.NewParallel._work(): [Thread:8682049344] Enqueueing executed task results
Job.NewParallel._work(): [Thread:8682049344] Gained exclusive access
Job.NewParallel._work(): [Thread:8682049344] Starting search
Job.NewParallel._work(): [Thread:8682049344] Found 1 completed tasks to process
Task.executed_with_callbacks(): node <executing 0 'prog'>
Task.postprocess(): node <executed 0 'prog'>
Job.NewParallel._work(): [Thread:8682049344] Searching for new tasks

Taskmaster: Looking for a node to evaluate
Taskmaster: No candidate anymore.
Job.NewParallel._work(): [Thread:8682049344] Found no task requiring execution, and have no jobs: marking complete
Job.NewParallel._work(): [Thread:8682049344] Gained exclusive access
Job.NewParallel._work(): [Thread:8682049344] Completion detected, breaking from main loop

The --taskmastertrace option doesn't provide information about the actual calculations involved in deciding
if a file is up-to-date, but it does show all of the dependencies it knows about for each Node, and the order in which
those dependencies are evaluated. This can be useful as an alternate way to determine whether or not your SCons
configuration, or the implicit dependency scan, has actually identified all the correct dependencies you want it to.

28.8. Watch SCons prepare targets for
building: the --debug=prepare Option
Sometimes SCons doesn't build the target you want and it's difficult to figure out why. You can use the --
debug=prepare option to see all the targets SCons is considering, and whether they are already up-to-date or not.
The message is printed before SCons decides whether to build the target.

Why is a file disappearing? the --debug=duplicate
Option

191

28.9. Why is a file disappearing? the --
debug=duplicate Option
When using the Duplicate option to create variant dirs, sometimes you may find files not getting linked or copied
to where you expect (or not at all), or files mysteriously disappearing. These are usually because of a misconfiguration
of some kind in the SConscript files, but they can be tricky to debug. The --debug=duplicate option shows
each time a variant file is unlinked and relinked from its source (or copied, depending on settings), and also shows a
message for removing "stale" variant-dir files that no longer have a corresponding source file. It also prints a line for
each target that's removed just before building, since that can also be mistaken for the same thing.

28.10. Keep it simple
Over the years, many developers have chosen to dive in and make vastly complicated build systems out of SCons,
which sometimes don't work quite as expected. As a general rule, make sure you need to reach for a complex solution
before you do so. SCons is mature software and has evolved over time to meet a lot of feature requests, so there is often
an easier way to do something if you can just find it. The SCons community can be helpful here - the discussion lists and
chat channels can be a way to find out if something can be done an easier way before embarking on an implementation.

When something does misbehave, trying to isolate the problem to a simple test case can really help. The work to create
a reproducer often helps you spot the issue yourself, and a simple example is much easier for others to look over and
possibly spot logical flaws, misuse of the API, or other ways something could have been done. In addition, if it turns
out there's actually a real SCons bug (we believe it's a high quality piece of software, but all software has some bugs),
it's very likely the bug filing will result in a request for a simple reproducer anyway.

192

Appendix A. Construction Variables
This appendix contains descriptions of all of the construction variables that are potentially available "out of the box"
in this version of SCons. Whether or not setting a construction variable in a construction environment will actually
have an effect depends on whether any of the Tools and/or Builders that use the variable have been included in the
construction environment.

In this appendix, we have appended the initial $ (dollar sign) to the beginning of each variable name when it appears
in the text, but left off the dollar sign in the left-hand column where the name appears for each entry.

__LDMODULEVERSIONFLAGS
This construction variable automatically introduces $_LDMODULEVERSIONFLAGS if $LDMODULEVERSION
is set. Othervise it evaluates to an empty string.

__SHLIBVERSIONFLAGS
This construction variable automatically introduces $_SHLIBVERSIONFLAGS if $SHLIBVERSION is set.
Othervise it evaluates to an empty string.

APPLELINK_COMPATIBILITY_VERSION
On Mac OS X this is used to set the linker flag: -compatibility_version

The value is specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be derived from $SHLIBVERSION if not specified. The
lowest digit will be dropped and replaced by a 0.

If the $APPLELINK_NO_COMPATIBILITY_VERSION is set then no -compatibility_version will be output.

See MacOS's ld manpage for more details

_APPLELINK_COMPATIBILITY_VERSION
A macro (by default a generator function) used to create the linker flags to specify apple's linker's -
compatibility_version flag. The default generator uses $APPLELINK_COMPATIBILITY_VERSION and
$APPLELINK_NO_COMPATIBILITY_VERSION and $SHLIBVERSION to determine the correct flag.

APPLELINK_CURRENT_VERSION
On Mac OS X this is used to set the linker flag: -current_version

The value is specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be set to $SHLIBVERSION if not specified.

If the $APPLELINK_NO_CURRENT_VERSION is set then no -current_version will be output.

See MacOS's ld manpage for more details

_APPLELINK_CURRENT_VERSION
A macro (by default a generator function) used to create the linker flags to specify apple's
linker's -current_version flag. The default generator uses $APPLELINK_CURRENT_VERSION and
$APPLELINK_NO_CURRENT_VERSION and $SHLIBVERSION to determine the correct flag.

APPLELINK_NO_COMPATIBILITY_VERSION
Set this to any True (1|True|non-empty string) value to disable adding -compatibility_version flag when generating
versioned shared libraries.

This overrides $APPLELINK_COMPATIBILITY_VERSION.

193

APPLELINK_NO_CURRENT_VERSION
Set this to any True (1|True|non-empty string) value to disable adding -current_version flag when generating
versioned shared libraries.

This overrides $APPLELINK_CURRENT_VERSION.

AR
The static library archiver.

ARCHITECTURE
Specifies the system architecture for which the package is being built. The default is the system architecture of
the machine on which SCons is running. This is used to fill in the Architecture: field in an Ipkg control
file, and the BuildArch: field in the RPM .spec file, as well as forming part of the name of a generated
RPM package file.

See the Package builder.

ARCOM
The command line used to generate a static library from object files.

ARCOMSTR
The string displayed when a static library is generated from object files. If this is not set, then $ARCOM (the
command line) is displayed.

env = Environment(ARCOMSTR = "Archiving $TARGET")

ARFLAGS
General options passed to the static library archiver.

AS
The assembler.

ASCOM
The command line used to generate an object file from an assembly-language source file.

ASCOMSTR
The string displayed when an object file is generated from an assembly-language source file. If this is not set,
then $ASCOM (the command line) is displayed.

env = Environment(ASCOMSTR = "Assembling $TARGET")

ASFLAGS
General options passed to the assembler.

ASPPCOM
The command line used to assemble an assembly-language source file into an object file after first running the file
through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
are included on this command line.

ASPPCOMSTR
The string displayed when an object file is generated from an assembly-language source file after first running
the file through the C preprocessor. If this is not set, then $ASPPCOM (the command line) is displayed.

194

env = Environment(ASPPCOMSTR = "Assembling $TARGET")

ASPPFLAGS
General options when an assembling an assembly-language source file into an object file after first running the
file through the C preprocessor. The default is to use the value of $ASFLAGS.

BIBTEX
The bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

BIBTEXCOM
The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BIBTEXCOMSTR
The string displayed when generating a bibliography for TeX or LaTeX. If this is not set, then $BIBTEXCOM
(the command line) is displayed.

env = Environment(BIBTEXCOMSTR = "Generating bibliography $TARGET")

BIBTEXFLAGS
General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BUILDERS
A dictionary mapping the names of the builders available through the construction environment to underlying
Builder objects. Custom builders need to be added to this to make them available.

A platform-dependent default list of builders such as Program, Library etc. is used to populate this
construction variable when the construction environment is initialized via the presence/absence of the tools those
builders depend on. $BUILDERS can be examined to learn which builders will actually be available at run-time.

Note that if you initialize this construction variable through assignment when the construction environment is
created, that value for $BUILDERS will override any defaults:

bld = Builder(action='foobuild < $SOURCE > $TARGET')
env = Environment(BUILDERS={'NewBuilder': bld})

To instead use a new Builder object in addition to the default Builders, add your new Builder object like this:

env = Environment()
env.Append(BUILDERS={'NewBuilder': bld})

or this:

env = Environment()
env['BUILDERS']['NewBuilder'] = bld

CACHEDIR_CLASS
The class type that SCons should use when instantiating a new CacheDir in this construction environment. Must
be a subclass of the SCons.CacheDir.CacheDir class.

CC
The C compiler.

195

CCCOM
The command line used to compile a C source file to a (static) object file. Any options specified in the $CFLAGS,
$CCFLAGS and $CPPFLAGS construction variables are included on this command line. See also $SHCCCOM
for compiling to shared objects.

CCCOMSTR
If set, the string displayed when a C source file is compiled to a (static) object file. If not set, then $CCCOM (the
command line) is displayed. See also $SHCCCOMSTR for compiling to shared objects.

env = Environment(CCCOMSTR = "Compiling static object $TARGET")

CCDEPFLAGS
Options to pass to C or C++ compiler to generate list of dependency files.

This is set only by compilers which support this functionality. (gcc, clang, and msvc currently)

CCFLAGS
General options that are passed to the C and C++ compilers. See also $SHCCFLAGS for compiling to shared
objects.

CCPCHFLAGS
Options added to the compiler command line to support building with precompiled headers. The default value
expands expands to the appropriate Microsoft Visual C++ command-line options when the $PCH construction
variable is set.

CCPDBFLAGS
Options added to the compiler command line to support storing debugging information in a Microsoft Visual C+
+ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when
the $PDB construction variable is set.

The Microsoft Visual C++ compiler option that SCons uses by default to generate PDB information is /Z7. This
works correctly with parallel (-j) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug
information embedded into a static library. Using the /Zi instead may yield improved link-time performance,
although parallel builds will no longer work.

You can generate PDB files with the /Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env['CCPDBFLAGS'] = ['${(PDB and "/Zi /Fd%s" % File(PDB)) or ""}']

An alternative would be to use the /Zi to put the debugging information in a separate .pdb file for each object
file by overriding the $CCPDBFLAGS variable as follows:

env['CCPDBFLAGS'] = '/Zi /Fd${TARGET}.pdb'

CCVERSION
The version number of the C compiler. This may or may not be set, depending on the specific C compiler being
used.

CFILESUFFIX
The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.l)
or YACC (.y) input files. The default suffix, of course, is .c (lower case). On case-insensitive systems (like
Windows), SCons also treats .C (upper case) files as C files.

196

CFLAGS
General options that are passed to the C compiler (C only; not C++). See also $SHCFLAGS for compiling to
shared objects.

CHANGE_SPECFILE
A hook for modifying the file that controls the packaging build (the .spec for RPM, the control for Ipkg, the
.wxs for MSI). If set, the function will be called after the SCons template for the file has been written.

See the Package builder.

CHANGED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGELOG
The name of a file containing the change log text to be included in the package. This is included as the
%changelog section of the RPM .spec file.

See the Package builder.

COMPILATIONDB_COMSTR
The string displayed when the CompilationDatabase builder's action is run.

COMPILATIONDB_PATH_FILTER
A string which instructs CompilationDatabase to only include entries where the output member matches
the pattern in the filter string using fnmatch, which uses glob style wildcards.

The default value is an empty string '', which disables filtering.

COMPILATIONDB_USE_ABSPATH
A boolean flag to instruct CompilationDatabase whether to write the file and output members in the
compilation database using absolute or relative paths.

The default value is False (use relative paths)

_concat
A function used to produce variables like $_CPPINCFLAGS. It takes four mandatory arguments, and up to 4
additional optional arguments: 1) a prefix to concatenate onto each element, 2) a list of elements, 3) a suffix to
concatenate onto each element, 4) an environment for variable interpolation, 5) an optional function that will
be called to transform the list before concatenation, 6) an optionally specified target (Can use TARGET), 7) an
optionally specified source (Can use SOURCE), 8) optional affect_signature flag which will wrap non-
empty returned value with $(and $) to indicate the contents should not affect the signature of the generated
command line.

 env['_CPPINCFLAGS'] = '${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE, affect_signature=False)}'

CONFIGUREDIR
The name of the directory in which Configure context test files are written. The default is .sconf_temp in the
top-level directory containing the SConstruct file.

197

If variant directories are in use, and the configure check results should not be shared between variants, you can
set $CONFIGUREDIR and $CONFIGURELOG so they are unique per variant directory.

CONFIGURELOG
The name of the Configure context log file. The default is config.log in the top-level directory containing
the SConstruct file.

If variant directories are in use, and the configure check results should not be shared between variants, you can
set $CONFIGUREDIR and $CONFIGURELOG so they are unique per variant directory.

_CPPDEFFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options to define
values. The value of $_CPPDEFFLAGS is created by respectively prepending and appending $CPPDEFPREFIX
and $CPPDEFSUFFIX to each definition in $CPPDEFINES.

CPPDEFINES
A platform independent specification of C preprocessor macro definitions. The definitions are added to command
lines through the automatically-generated $_CPPDEFFLAGS construction variable, which is constructed
according to the contents of $CPPDEFINES:

• If $CPPDEFINES is a string, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction
variables are respectively prepended and appended to each definition in $CPPDEFINES, split on whitespace.

Adds -Dxyz to POSIX compiler command lines,
and /Dxyz to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES='xyz')

• If $CPPDEFINES is a list, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction variables
are respectively prepended and appended to each element in the list. If any element is a tuple (or list) then
the first item of the tuple is the macro name and the second is the macro definition. If the definition is not
omitted or None, the name and definition are combined into a single name=definition item before the
preending/appending.

Adds -DB=2 -DA to POSIX compiler command lines,
and /DB=2 /DA to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES=[('B', 2), 'A'])

• If $CPPDEFINES is a dictionary, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction
variables are respectively prepended and appended to each key from the dictionary. If the value for a key
is not None, then the key (macro name) and the value (macros definition) are combined into a single
name=definition item before the prepending/appending.

Adds -DA -DB=2 to POSIX compiler command lines,
or /DA /DB=2 to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES={'B':2, 'A':None})

Depending on how contents are added to $CPPDEFINES, it may be transformed into a compound type, for
example a list containing strings, tuples and/or dictionaries. SCons can correctly expand such a compound type.

Note that SCons may call the compiler via a shell. If a macro definition contains characters such as spaces that
have meaning to the shell, or is intended to be a string value, you may need to use the shell's quoting syntax to
avoid interpretation by the shell before the preprocessor sees it. Function-like macros are not supported via this
mechanism (and some compilers do not even implement that functionality via the command lines). When quoting,

198

note that one set of quote characters are used to define a Python string, then quotes embedded inside that would
be consumed by the shell unless escaped. These examples may help illustrate:

env = Environment(CPPDEFINES=['USE_ALT_HEADER=\\"foo_alt.h\\"'])
env = Environment(CPPDEFINES=[('USE_ALT_HEADER', '\\"foo_alt.h\\"')])

:Changed in version 4.5: SCons no longer sorts $CPPDEFINES values entered in dictionary form. Python now
preserves dictionary keys in the order they are entered, so it is no longer necessary to sort them to ensure a stable
command line.

CPPDEFPREFIX
The prefix used to specify preprocessor macro definitions on the C compiler command line. This will be
prepended to each definition in the $CPPDEFINES construction variable when the $_CPPDEFFLAGS variable
is automatically generated.

CPPDEFSUFFIX
The suffix used to specify preprocessor macro definitions on the C compiler command line. This will be
appended to each definition in the $CPPDEFINES construction variable when the $_CPPDEFFLAGS variable
is automatically generated.

CPPFLAGS
User-specified C preprocessor options. These will be included in any command that uses the C preprocessor,
including not just compilation of C and C++ source files via the $CCCOM, $SHCCCOM, $CXXCOM and
$SHCXXCOM command lines, but also the $FORTRANPPCOM, $SHFORTRANPPCOM, $F77PPCOM and
$SHF77PPCOM command lines used to compile a Fortran source file, and the $ASPPCOM command line used
to assemble an assembly language source file, after first running each file through the C preprocessor. Note that
this variable does not contain -I (or similar) include search path options that scons generates automatically from
$CPPPATH. See $_CPPINCFLAGS, below, for the variable that expands to those options.

_CPPINCFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options for
specifying directories to be searched for include files. The value of $_CPPINCFLAGS is created by respectively
prepending and appending $INCPREFIX and $INCSUFFIX to each directory in $CPPPATH.

CPPPATH
The list of directories that the C preprocessor will search for include directories. The C/C++ implicit dependency
scanner will search these directories for include files. In general it's not advised to put include directory directives
directly into $CCFLAGS or $CXXFLAGS as the result will be non-portable and the directories will not be searched
by the dependency scanner. $CPPPATH should be a list of path strings, or a single string, not a pathname list
joined by Python's os.pathsep.

Note: directory names in $CPPPATH will be looked-up relative to the directory of the SConscript file when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use the # prefix:

env = Environment(CPPPATH='#/include')

The directory look-up can also be forced using the Dir function:

include = Dir('include')
env = Environment(CPPPATH=include)

The directory list will be added to command lines through the automatically-generated $_CPPINCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the

199

$INCPREFIX and $INCSUFFIX construction variables to each directory in $CPPPATH. Any command lines
you define that need the $CPPPATH directory list should include $_CPPINCFLAGS:

env = Environment(CCCOM="my_compiler $_CPPINCFLAGS -c -o $TARGET $SOURCE")

CPPSUFFIXES
The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The
default list is:

[".c", ".C", ".cxx", ".cpp", ".c++", ".cc",
 ".h", ".H", ".hxx", ".hpp", ".hh",
 ".F", ".fpp", ".FPP",
 ".m", ".mm",
 ".S", ".spp", ".SPP"]

CXX
The C++ compiler. See also $SHCXX for compiling to shared objects..

CXXCOM
The command line used to compile a C++ source file to an object file. Any options specified in the $CXXFLAGS
and $CPPFLAGS construction variables are included on this command line. See also $SHCXXCOM for compiling
to shared objects..

CXXCOMSTR
If set, the string displayed when a C++ source file is compiled to a (static) object file. If not set, then $CXXCOM
(the command line) is displayed. See also $SHCXXCOMSTR for compiling to shared objects..

env = Environment(CXXCOMSTR = "Compiling static object $TARGET")

CXXFILESUFFIX
The suffix for C++ source files. This is used by the internal CXXFile builder when generating C++ files from Lex
(.ll) or YACC (.yy) input files. The default suffix is .cc. SCons also treats files with the suffixes .cpp, .cxx,
.c++, and .C++ as C++ files, and files with .mm suffixes as Objective C++ files. On case-sensitive systems
(Linux, UNIX, and other POSIX-alikes), SCons also treats .C (upper case) files as C++ files.

CXXFLAGS
General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that
setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or
override the value of $CXXFLAGS. See also $SHCXXFLAGS for compiling to shared objects..

CXXVERSION
The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler
being used.

DC
The D compiler to use. See also $SHDC for compiling to shared objects.

DCOM
The command line used to compile a D file to an object file. Any options specified in the $DFLAGS construction
variable is included on this command line. See also $SHDCOM for compiling to shared objects.

DCOMSTR
If set, the string displayed when a D source file is compiled to a (static) object file. If not set, then $DCOM (the
command line) is displayed. See also $SHDCOMSTR for compiling to shared objects.

200

DDEBUG
List of debug tags to enable when compiling.

DDEBUGPREFIX
DDEBUGPREFIX.

DDEBUGSUFFIX
DDEBUGSUFFIX.

DESCRIPTION
A long description of the project being packaged. This is included in the relevant section of the file that controls
the packaging build.

See the Package builder.

DESCRIPTION_lang
A language-specific long description for the specified lang. This is used to populate a %description -l
section of an RPM .spec file.

See the Package builder.

DFILESUFFIX
DFILESUFFIX.

DFLAGPREFIX
DFLAGPREFIX.

DFLAGS
General options that are passed to the D compiler.

DFLAGSUFFIX
DFLAGSUFFIX.

DI_FILE_DIR
Path where .di files will be generated

DI_FILE_DIR_PREFIX
Prefix to send the di path argument to compiler

DI_FILE_DIR_SUFFFIX
Suffix to send the di path argument to compiler

DI_FILE_SUFFIX
Suffix of d include files default is .di

DINCPREFIX
DINCPREFIX.

DINCSUFFIX
DLIBFLAGSUFFIX.

Dir
A function that converts a string into a Dir instance relative to the target being built.

Dirs
A function that converts a list of strings into a list of Dir instances relative to the target being built.

DLIB
Name of the lib tool to use for D codes.

201

DLIBCOM
The command line to use when creating libraries.

DLIBDIRPREFIX
DLIBLINKPREFIX.

DLIBDIRSUFFIX
DLIBLINKSUFFIX.

DLIBFLAGPREFIX
DLIBFLAGPREFIX.

DLIBFLAGSUFFIX
DLIBFLAGSUFFIX.

DLIBLINKPREFIX
DLIBLINKPREFIX.

DLIBLINKSUFFIX
DLIBLINKSUFFIX.

DLINK
Name of the linker to use for linking systems including D sources. See also $SHDLINK for linking shared objects.

DLINKCOM
The command line to use when linking systems including D sources. See also $SHDLINKCOM for linking shared
objects.

DLINKFLAGPREFIX
DLINKFLAGPREFIX.

DLINKFLAGS
List of linker flags. See also $SHDLINKFLAGS for linking shared objects.

DLINKFLAGSUFFIX
DLINKFLAGSUFFIX.

DOCBOOK_DEFAULT_XSL_EPUB
The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTML
The default XSLT file for the DocbookHtml builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLCHUNKED
The default XSLT file for the DocbookHtmlChunked builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP
The default XSLT file for the DocbookHtmlhelp builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN
The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets
specified via keyword.

202

DOCBOOK_DEFAULT_XSL_PDF
The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESHTML
The default XSLT file for the DocbookSlidesHtml builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESPDF
The default XSLT file for the DocbookSlidesPdf builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_FOP
The path to the PDF renderer fop or xep, if one of them is installed (fop gets checked first).

DOCBOOK_FOPCOM
The full command-line for the PDF renderer fop or xep.

DOCBOOK_FOPCOMSTR
The string displayed when a renderer like fop or xep is used to create PDF output from an XML file.

DOCBOOK_FOPFLAGS
Additonal command-line flags for the PDF renderer fop or xep.

DOCBOOK_XMLLINT
The path to the external executable xmllint, if it's installed. Note, that this is only used as last fallback for
resolving XIncludes, if no lxml Python binding can be imported in the current system.

DOCBOOK_XMLLINTCOM
The full command-line for the external executable xmllint.

DOCBOOK_XMLLINTCOMSTR
The string displayed when xmllint is used to resolve XIncludes for a given XML file.

DOCBOOK_XMLLINTFLAGS
Additonal command-line flags for the external executable xmllint.

DOCBOOK_XSLTPROC
The path to the external executable xsltproc (or saxon, xalan), if one of them is installed. Note, that this
is only used as last fallback for XSL transformations, if no lxml Python binding can be imported in the current
system.

DOCBOOK_XSLTPROCCOM
The full command-line for the external executable xsltproc (or saxon, xalan).

DOCBOOK_XSLTPROCCOMSTR
The string displayed when xsltproc is used to transform an XML file via a given XSLT stylesheet.

DOCBOOK_XSLTPROCFLAGS
Additonal command-line flags for the external executable xsltproc (or saxon, xalan).

DOCBOOK_XSLTPROCPARAMS
Additonal parameters that are not intended for the XSLT processor executable, but the XSL processing itself. By
default, they get appended at the end of the command line for saxon and saxon-xslt, respectively.

DPATH
List of paths to search for import modules.

203

DRPATHPREFIX
DRPATHPREFIX.

DRPATHSUFFIX
DRPATHSUFFIX.

DSUFFIXES
The list of suffixes of files that will be scanned for imported D package files. The default list is ['.d'].

DVERPREFIX
DVERPREFIX.

DVERSIONS
List of version tags to enable when compiling.

DVERSUFFIX
DVERSUFFIX.

DVIPDF
The TeX DVI file to PDF file converter.

DVIPDFCOM
The command line used to convert TeX DVI files into a PDF file.

DVIPDFCOMSTR
The string displayed when a TeX DVI file is converted into a PDF file. If this is not set, then $DVIPDFCOM (the
command line) is displayed.

DVIPDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVIPS
The TeX DVI file to PostScript converter.

DVIPSFLAGS
General options passed to the TeX DVI file to PostScript converter.

ENV
The execution environment - a dictionary of environment variables used when SCons invokes external commands
to build targets defined in this construction environment. When $ENV is passed to a command, all list values are
assumed to be path lists and are joined using the search path separator. Any other non-string values are coerced
to a string.

Note that by default SCons does not propagate the environment in effect when you execute scons (the "shell
environment") to the execution environment. This is so that builds will be guaranteed repeatable regardless of the
environment variables set at the time scons is invoked. If you want to propagate a shell environment variable to
the commands executed to build target files, you must do so explicitly. A common example is the system PATH
environment variable, so that scons will find utilities the same way as the invoking shell (or other process):

import os
env = Environment(ENV={'PATH': os.environ['PATH']})

Although it is usually not recommended, you can propagate the entire shell environment in one go:

import os
env = Environment(ENV=os.environ.copy())

204

ESCAPE
A function that will be called to escape shell special characters in command lines. The function should take one
argument: the command line string to escape; and should return the escaped command line.

F03
The Fortran 03 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F03 if you need to use a specific compiler or compiler
version for Fortran 03 files.

F03COM
The command line used to compile a Fortran 03 source file to an object file. You only need to set $F03COM if you
need to use a specific command line for Fortran 03 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F03COMSTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file. If not set, then $F03COM
or $FORTRANCOM (the command line) is displayed.

F03FILESUFFIXES
The list of file extensions for which the F03 dialect will be used. By default, this is ['.f03']

F03FLAGS
General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F03PATH. See
$_F03INCFLAGS below, for the variable that expands to those options. You only need to set $F03FLAGS if
you need to define specific user options for Fortran 03 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F03INCFLAGS
An automatically-generated construction variable containing the Fortran 03 compiler command-line options for
specifying directories to be searched for include files. The value of $_F03INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F03PATH.

F03PATH
The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F03FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F03PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F03PATH if you need to define a specific include path for Fortran 03 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F03PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F03PATH=include)

The directory list will be added to command lines through the automatically-generated $_F03INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F03PATH. Any command lines you define
that need the F03PATH directory list should include $_F03INCFLAGS:

205

env = Environment(F03COM="my_compiler $_F03INCFLAGS -c -o $TARGET $SOURCE")

F03PPCOM
The command line used to compile a Fortran 03 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F03FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F03PPCOM if you need to use a specific C-preprocessor command
line for Fortran 03 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F03PPCOMSTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F03PPCOM or $FORTRANPPCOM (the command line) is displayed.

F03PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F03 dialect will be used. By default,
this is empty.

F08
The Fortran 08 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F08 if you need to use a specific compiler or compiler
version for Fortran 08 files.

F08COM
The command line used to compile a Fortran 08 source file to an object file. You only need to set $F08COM if you
need to use a specific command line for Fortran 08 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F08COMSTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file. If not set, then $F08COM
or $FORTRANCOM (the command line) is displayed.

F08FILESUFFIXES
The list of file extensions for which the F08 dialect will be used. By default, this is ['.f08']

F08FLAGS
General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F08PATH. See
$_F08INCFLAGS below, for the variable that expands to those options. You only need to set $F08FLAGS if
you need to define specific user options for Fortran 08 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F08INCFLAGS
An automatically-generated construction variable containing the Fortran 08 compiler command-line options for
specifying directories to be searched for include files. The value of $_F08INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F08PATH.

F08PATH
The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F08FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F08PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F08PATH if you need to define a specific include path for Fortran 08 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

206

env = Environment(F08PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F08PATH=include)

The directory list will be added to command lines through the automatically-generated $_F08INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F08PATH. Any command lines you define
that need the F08PATH directory list should include $_F08INCFLAGS:

env = Environment(F08COM="my_compiler $_F08INCFLAGS -c -o $TARGET $SOURCE")

F08PPCOM
The command line used to compile a Fortran 08 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F08FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F08PPCOM if you need to use a specific C-preprocessor command
line for Fortran 08 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F08PPCOMSTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F08PPCOM or $FORTRANPPCOM (the command line) is displayed.

F08PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F08 dialect will be used. By default,
this is empty.

F77
The Fortran 77 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F77 if you need to use a specific compiler or compiler
version for Fortran 77 files.

F77COM
The command line used to compile a Fortran 77 source file to an object file. You only need to set $F77COM if you
need to use a specific command line for Fortran 77 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F77COMSTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file. If not set, then $F77COM
or $FORTRANCOM (the command line) is displayed.

F77FILESUFFIXES
The list of file extensions for which the F77 dialect will be used. By default, this is ['.f77']

F77FLAGS
General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F77PATH. See
$_F77INCFLAGS below, for the variable that expands to those options. You only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

207

_F77INCFLAGS
An automatically-generated construction variable containing the Fortran 77 compiler command-line options for
specifying directories to be searched for include files. The value of $_F77INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F77PATH.

F77PATH
The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F77PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F77PATH if you need to define a specific include path for Fortran 77 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F77PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F77PATH=include)

The directory list will be added to command lines through the automatically-generated $_F77INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F77PATH. Any command lines you define
that need the F77PATH directory list should include $_F77INCFLAGS:

env = Environment(F77COM="my_compiler $_F77INCFLAGS -c -o $TARGET $SOURCE")

F77PPCOM
The command line used to compile a Fortran 77 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F77PPCOM if you need to use a specific C-preprocessor command
line for Fortran 77 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F77PPCOMSTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F77PPCOM or $FORTRANPPCOM (the command line) is displayed.

F77PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By default,
this is empty.

F90
The Fortran 90 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F90 if you need to use a specific compiler or compiler
version for Fortran 90 files.

F90COM
The command line used to compile a Fortran 90 source file to an object file. You only need to set $F90COM if you
need to use a specific command line for Fortran 90 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

208

F90COMSTR
If set, the string displayed when a Fortran 90 source file is compiled to an object file. If not set, then $F90COM
or $FORTRANCOM (the command line) is displayed.

F90FILESUFFIXES
The list of file extensions for which the F90 dialect will be used. By default, this is ['.f90']

F90FLAGS
General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F90PATH. See
$_F90INCFLAGS below, for the variable that expands to those options. You only need to set $F90FLAGS if
you need to define specific user options for Fortran 90 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F90INCFLAGS
An automatically-generated construction variable containing the Fortran 90 compiler command-line options for
specifying directories to be searched for include files. The value of $_F90INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F90PATH.

F90PATH
The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F90FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F90PATH if you need to define a specific include path for Fortran 90 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F90PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F90PATH=include)

The directory list will be added to command lines through the automatically-generated $_F90INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F90PATH. Any command lines you define
that need the F90PATH directory list should include $_F90INCFLAGS:

env = Environment(F90COM="my_compiler $_F90INCFLAGS -c -o $TARGET $SOURCE")

F90PPCOM
The command line used to compile a Fortran 90 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F90FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F90PPCOM if you need to use a specific C-preprocessor command
line for Fortran 90 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F90PPCOMSTR
If set, the string displayed when a Fortran 90 source file is compiled after first running the file through the C
preprocessor. If not set, then $F90PPCOM or $FORTRANPPCOM (the command line) is displayed.

209

F90PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By default,
this is empty.

F95
The Fortran 95 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F95 if you need to use a specific compiler or compiler
version for Fortran 95 files.

F95COM
The command line used to compile a Fortran 95 source file to an object file. You only need to set $F95COM if you
need to use a specific command line for Fortran 95 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F95COMSTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file. If not set, then $F95COM
or $FORTRANCOM (the command line) is displayed.

F95FILESUFFIXES
The list of file extensions for which the F95 dialect will be used. By default, this is ['.f95']

F95FLAGS
General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F95PATH. See
$_F95INCFLAGS below, for the variable that expands to those options. You only need to set $F95FLAGS if
you need to define specific user options for Fortran 95 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F95INCFLAGS
An automatically-generated construction variable containing the Fortran 95 compiler command-line options for
specifying directories to be searched for include files. The value of $_F95INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F95PATH.

F95PATH
The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F95FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F95PATH if you need to define a specific include path for Fortran 95 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F95PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F95PATH=include)

The directory list will be added to command lines through the automatically-generated $_F95INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F95PATH. Any command lines you define
that need the F95PATH directory list should include $_F95INCFLAGS:

210

env = Environment(F95COM="my_compiler $_F95INCFLAGS -c -o $TARGET $SOURCE")

F95PPCOM
The command line used to compile a Fortran 95 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F95PPCOM if you need to use a specific C-preprocessor command
line for Fortran 95 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F95PPCOMSTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F95PPCOM or $FORTRANPPCOM (the command line) is displayed.

F95PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By default,
this is empty.

File
A function that converts a string into a File instance relative to the target being built.

FILE_ENCODING
File encoding used for files written by Textfile and Substfile. Set to "utf-8" by default.

New in version 4.5.0.

FORTRAN
The default Fortran compiler for all versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options specified in the
$FORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included
on this command line.

FORTRANCOMMONFLAGS
General user-specified options that are passed to the Fortran compiler. Similar to $FORTRANFLAGS, but this
construction variable is applied to all dialects.

New in version 4.4.

FORTRANCOMSTR
If set, the string displayed when a Fortran source file is compiled to an object file. If not set, then $FORTRANCOM
(the command line) is displayed.

FORTRANFILESUFFIXES
The list of file extensions for which the FORTRAN dialect will be used. By default, this is ['.f', '.for',
'.ftn']

FORTRANFLAGS
General user-specified options for the FORTRAN dialect that are passed to the Fortran compiler. Note that this
variable does not contain -I (or similar) include or module search path options that scons generates automatically
from $FORTRANPATH. See $_FORTRANINCFLAGS and $_FORTRANMODFLAG for the construction variables
that expand those options.

_FORTRANINCFLAGS
An automatically-generated construction variable containing the Fortran compiler command-line options for
specifying directories to be searched for include files and module files. The value of $_FORTRANINCFLAGS is

211

created by respectively prepending and appending $INCPREFIX and $INCSUFFIX to the beginning and end
of each directory in $FORTRANPATH.

FORTRANMODDIR
Directory location where the Fortran compiler should place any module files it generates. This variable is empty,
by default. Some Fortran compilers will internally append this directory in the search path for module files, as well.

FORTRANMODDIRPREFIX
The prefix used to specify a module directory on the Fortran compiler command line. This will be prepended to the
beginning of the directory in the $FORTRANMODDIR construction variables when the $_FORTRANMODFLAG
variables is automatically generated.

FORTRANMODDIRSUFFIX
The suffix used to specify a module directory on the Fortran compiler command line. This will be appended to the
end of the directory in the $FORTRANMODDIR construction variables when the $_FORTRANMODFLAG variables
is automatically generated.

_FORTRANMODFLAG
An automatically-generated construction variable containing the Fortran compiler command-line option for
specifying the directory location where the Fortran compiler should place any module files that happen to
get generated during compilation. The value of $_FORTRANMODFLAG is created by respectively prepending
and appending $FORTRANMODDIRPREFIX and $FORTRANMODDIRSUFFIX to the beginning and end of the
directory in $FORTRANMODDIR.

FORTRANMODPREFIX
The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of module_name.mod. As a result, this variable is left empty, by
default. For situations in which the compiler does not necessarily follow the normal convention, the user may use
this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFIX
The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of module_name.mod. As a result, this variable is set to ".mod",
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
use this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH
The list of directories that the Fortran compiler will search for include files and (for some compilers) module files.
The Fortran implicit dependency scanner will search these directories for include files (but not module files since
they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly put
include directory arguments in FORTRANFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in FORTRANPATH will be looked-up relative
to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to
the root of the source tree use #:

env = Environment(FORTRANPATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(FORTRANPATH=include)

The directory list will be added to command lines through the automatically-generated $_FORTRANINCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the

212

$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory in
$FORTRANPATH. Any command lines you define that need the FORTRANPATH directory list should include
$_FORTRANINCFLAGS:

env = Environment(FORTRANCOM="my_compiler $_FORTRANINCFLAGS -c -o $TARGET $SOURCE")

FORTRANPPCOM
The command line used to compile a Fortran source file to an object file after first running the file through the
C preprocessor. By default, any options specified in the $FORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS,
$_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included on this command line.

FORTRANPPCOMSTR
If set, the string displayed when a Fortran source file is compiled to an object file after first running the file through
the C preprocessor. If not set, then $FORTRANPPCOM (the command line) is displayed.

FORTRANPPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By
default, this is ['.fpp', '.FPP']

FORTRANSUFFIXES
The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE
statements). The default list is:

[".f", ".F", ".for", ".FOR", ".ftn", ".FTN", ".fpp", ".FPP",
".f77", ".F77", ".f90", ".F90", ".f95", ".F95"]

FRAMEWORKPATH
On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler to find
framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks
when linking (see $FRAMEWORKS). For example:

env.AppendUnique(FRAMEWORKPATH='#myframeworkdir')

will add

... -Fmyframeworkdir

to the compiler and linker command lines.

_FRAMEWORKPATH
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options corresponding to $FRAMEWORKPATH.

FRAMEWORKPATHPREFIX
On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see $FRAMEWORKPATH).
The default value is -F.

FRAMEWORKPREFIX
On Mac OS X with gcc, the prefix to be used for linking in frameworks (see $FRAMEWORKS). The default value
is -framework.

213

FRAMEWORKS
On Mac OS X with gcc, a list of the framework names to be linked into a program or shared library or bundle.
The default value is the empty list. For example:

env.AppendUnique(FRAMEWORKS=Split('System Cocoa SystemConfiguration'))

_FRAMEWORKS
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options for linking with FRAMEWORKS.

FRAMEWORKSFLAGS
On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a
command line building a loadable module. (This has been largely superseded by the $FRAMEWORKPATH,
$FRAMEWORKPATHPREFIX, $FRAMEWORKPREFIX and $FRAMEWORKS variables described above.)

GS
The Ghostscript program used to, for example, convert PostScript to PDF files.

GSCOM
The full Ghostscript command line used for the conversion process. Its default value is “$GS $GSFLAGS -
sOutputFile=$TARGET $SOURCES”.

GSCOMSTR
The string displayed when Ghostscript is called for the conversion process. If this is not set (the default), then
$GSCOM (the command line) is displayed.

GSFLAGS
General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its
default value is “-dNOPAUSE -dBATCH -sDEVICE=pdfwrite”

HOST_ARCH
The name of the host hardware architecture used to create this construction environment. The platform code sets
this when initializing (see $PLATFORM and the platform argument to Environment). Note the detected
name of the architecture may not be identical to that returned by the Python platform.machine method.

On the win32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. Changing the values at any later time will not cause the tool to be
reinitialized. Valid host arch values are x86 and arm for 32-bit hosts and amd64, arm64, and x86_64 for 64-
bit hosts.

Should be considered immutable. $HOST_ARCH is not currently used by other platforms, but the option is reserved
to do so in future

HOST_OS
The name of the host operating system for the platform used to create this construction environment. The platform
code sets this when initializing (see $PLATFORM and the platform argument to Environment).

Should be considered immutable. $HOST_OS is not currently used by SCons, but the option is reserved to do
so in future

IDLSUFFIXES
The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The
default list is:

214

[".idl", ".IDL"]

IMPLIBNOVERSIONSYMLINKS
Used to override $SHLIBNOVERSIONSYMLINKS/$LDMODULENOVERSIONSYMLINKS when creating
versioned import library for a shared library/loadable module. If not defined, then
$SHLIBNOVERSIONSYMLINKS/$LDMODULENOVERSIONSYMLINKS is used to determine whether to disable
symlink generation or not.

IMPLIBPREFIX
The prefix used for import library names. For example, cygwin uses import libraries (libfoo.dll.a) in
pair with dynamic libraries (cygfoo.dll). The cyglink linker sets $IMPLIBPREFIX to 'lib' and
$SHLIBPREFIX to 'cyg'.

IMPLIBSUFFIX
The suffix used for import library names. For example, cygwin uses import libraries (libfoo.dll.a) in
pair with dynamic libraries (cygfoo.dll). The cyglink linker sets $IMPLIBSUFFIX to '.dll.a' and
$SHLIBSUFFIX to '.dll'.

IMPLIBVERSION
Used to override $SHLIBVERSION/$LDMODULEVERSION when generating versioned import library for a
shared library/loadable module. If undefined, the $SHLIBVERSION/$LDMODULEVERSION is used to determine
the version of versioned import library.

IMPLICIT_COMMAND_DEPENDENCIES
Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SCons will add to each target an implicit dependency on the command represented by the first argument
of any command line it executes (which is typically the command itself). By setting such a dependency, SCons
can determine that a target should be rebuilt if the command changes, such as when a compiler is upgraded to a
new version. The specific file for the dependency is found by searching the PATH variable in the ENV dictionary
in the construction environment used to execute the command. The default is the same as setting the construction
variable $IMPLICIT_COMMAND_DEPENDENCIES to a True-like value (“true”, “yes”, or “1” - but not a number
greater than one, as that has a different meaning).

Action strings can be segmented by the use of an AND operator, &&. In a segemented string, each segment is a
separate “command line”, these are run sequentially until one fails or the entire sequence has been executed. If an
action string is segmented, then the selected behavior of $IMPLICIT_COMMAND_DEPENDENCIES is applied
to each segment.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to a False-like value (“none”, “false”, “no”, “0”, etc.), then
the implicit dependency will not be added to the targets built with that construction environment.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to “2” or higher, then that number of arguments in the
command line will be scanned for relative or absolute paths. If any are present, they will be added as implicit
dependencies to the targets built with that construction environment. The first argument in the command line will
be searched for using the PATH variable in the ENV dictionary in the construction environment used to execute
the command. The other arguments will only be found if they are absolute paths or valid paths relative to the
working directory.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to “all”, then all arguments in the command line will be
scanned for relative or absolute paths. If any are present, they will be added as implicit dependencies to the targets
built with that construction environment. The first argument in the command line will be searched for using the
PATH variable in the ENV dictionary in the construction environment used to execute the command. The other
arguments will only be found if they are absolute paths or valid paths relative to the working directory.

215

env = Environment(IMPLICIT_COMMAND_DEPENDENCIES=False)

INCPREFIX
The prefix used to specify an include directory on the C compiler command line. This will be prepended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPINCFLAGS and
$_FORTRANINCFLAGS variables are automatically generated.

INCSUFFIX
The suffix used to specify an include directory on the C compiler command line. This will be appended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPINCFLAGS and
$_FORTRANINCFLAGS variables are automatically generated.

INSTALL
A function to be called to install a file into a destination file name. The default function copies the file into the
destination (and sets the destination file's mode and permission bits to match the source file's). The function takes
the following arguments:

def install(dest, source, env):

dest is the path name of the destination file. source is the path name of the source file. env is the construction
environment (a dictionary of construction values) in force for this file installation.

INSTALLSTR
The string displayed when a file is installed into a destination file name. The default is:

Install file: "$SOURCE" as "$TARGET"

INTEL_C_COMPILER_VERSION
Set by the intelc Tool to the major version number of the Intel C compiler selected for use.

JAR
The Java archive tool.

JARCHDIR
The directory to which the Java archive tool should change (using the -C option).

JARCOM
The command line used to call the Java archive tool.

JARCOMSTR
The string displayed when the Java archive tool is called If this is not set, then $JARCOM (the command line)
is displayed.

env = Environment(JARCOMSTR="JARchiving $SOURCES into $TARGET")

JARFLAGS
General options passed to the Java archive tool. By default this is set to cf to create the necessary jar file.

JARSUFFIX
The suffix for Java archives: .jar by default.

JAVABOOTCLASSPATH
Specifies the location of the bootstrap class files. Can be specified as a string or Node object, or as a list of strings
or Node objects.

216

The value will be added to the JDK command lines via the -bootclasspath option, which requires a system-
specific search path separator. This will be supplied by SCons as needed when it constructs the command line
if $JAVABOOTCLASSPATH is provided in list form. If $JAVABOOTCLASSPATH is a single string containing
search path separator characters (: for POSIX systems or ; for Windows), it will not be modified; and so is
inherently system-specific; to supply the path in a system-independent manner, give $JAVABOOTCLASSPATH
as a list of paths instead.

Note

Can only be used when compiling for releases prior to JDK 9.

JAVAC
The Java compiler.

JAVACCOM
The command line used to compile a directory tree containing Java source files to corresponding Java class files.
Any options specified in the $JAVACFLAGS construction variable are included on this command line.

JAVACCOMSTR
The string displayed when compiling a directory tree of Java source files to corresponding Java class files. If this
is not set, then $JAVACCOM (the command line) is displayed.

env = Environment(JAVACCOMSTR="Compiling class files $TARGETS from $SOURCES")

JAVACFLAGS
General options that are passed to the Java compiler.

JAVACLASSDIR
The directory in which Java class files may be found. This is stripped from the beginning of any Java .class
file names supplied to the JavaH builder.

JAVACLASSPATH
Specifies the class search path for the JDK tools. Can be specified as a string or Node object, or as a list of strings
or Node objects. Class path entries may be directory names to search for class files or packages, pathnames to
archives (.jar or .zip) containing classes, or paths ending in a "base name wildcard" character (*), which
matches files in that directory with a .jar suffix. See the Java documentation for more details.

The value will be added to the JDK command lines via the -classpath option, which requires a system-
specific search path separator. This will be supplied by SCons as needed when it constructs the command line
if $JAVACLASSPATH is provided in list form. If $JAVACLASSPATH is a single string containing search path
separator characters (: for POSIX systems or ; for Windows), it will be split on the separator into a list of
individual paths for dependency scanning purposes. It will not be modified for JDK command-line usage, so such a
string is inherently system-specific; to supply the path in a system-independent manner, give $JAVACLASSPATH
as a list of paths instead.

Note

SCons always supplies a -sourcepath when invoking the Java compiler javac, regardless of the
setting of $JAVASOURCEPATH, as it passes the path(s) to the source(s) supplied in the call to the Java
builder via -sourcepath . From the documentation of the standard Java toolkit for javac: “If not
compiling code for modules, if the --source-path or -sourcepath option is not specified, then
the user class path is also searched for source files.” Since -sourcepath is always supplied, javac will
not use the contents of the value of $JAVACLASSPATH when searching for sources.

217

JAVACLASSSUFFIX
The suffix for Java class files; .class by default.

JAVAH
The Java generator for C header and stub files.

JAVAHCOM
The command line used to generate C header and stub files from Java classes. Any options specified in the
$JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR
The string displayed when C header and stub files are generated from Java classes. If this is not set, then
$JAVAHCOM (the command line) is displayed.

env = Environment(JAVAHCOMSTR="Generating header/stub file(s) $TARGETS from $SOURCES")

JAVAHFLAGS
General options passed to the C header and stub file generator for Java classes.

JAVAINCLUDES
Include path for Java header files (such as jni.h).

JAVAPROCESSORPATH
Specifies the location of the annotation processor class files. Can be specified as a string or Node object, or as
a list of strings or Node objects.

The value will be added to the JDK command lines via the -processorpath option, which requires a system-
specific search path separator. This will be supplied by SCons as needed when it constructs the command line
if $JAVAPROCESSORPATH is provided in list form. If $JAVAPROCESSORPATH is a single string containing
search path separator characters (: for POSIX systems or ; for Windows), it will not be modified; and so is
inherently system-specific; to supply the path in a system-independent manner, give $JAVAPROCESSORPATH
as a list of paths instead.

New in version 4.5.0

JAVASOURCEPATH
Specifies the list of directories that will be searched for input (source) .java files. Can be specified as a string
or Node object, or as a list of strings or Node objects.

The value will be added to the JDK command lines via the -sourcepath option, which requires a system-
specific search path separator, This will be supplied by SCons as needed when it constructs the command line if
$JAVASOURCEPATH is provided in list form. If $JAVASOURCEPATH is a single string containing search path
separator characters (: for POSIX systems or ; for Windows), it will not be modified, and so is inherently system-
specific; to supply the path in a system-independent manner, give $JAVASOURCEPATH as a list of paths instead.

Note that the specified directories are only added to the command line via the -sourcepath option. SCons
does not currently search the $JAVASOURCEPATH directories for dependent .java files.

JAVASUFFIX
The suffix for Java files; .java by default.

JAVAVERSION
Specifies the Java version being used by the Java builder. Set this to specify the version of Java targeted by the
javac compiler. This is sometimes necessary because Java 1.5 changed the file names that are created for nested
anonymous inner classes, which can cause a mismatch with the files that SCons expects will be generated by the

218

javac compiler. Setting $JAVAVERSION to a version greater than 1.4 makes SCons realize that a build with
such a compiler is actually up to date. The default is 1.4.

While this is not primarily intended for selecting one version of the Java compiler vs. another, it does have that
effect on the Windows platform. A more precise approach is to set $JAVAC (and related construction variables
for related utilities) to the path to the specific Java compiler you want, if that is not the default compiler. On non-
Windows platforms, the alternatives system may provide a way to adjust the default Java compiler without
having to specify explicit paths.

LATEX
The LaTeX structured formatter and typesetter.

LATEXCOM
The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOMSTR
The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set, then
$LATEXCOM (the command line) is displayed.

env = Environment(LATEXCOMSTR = "Building $TARGET from LaTeX input $SOURCES")

LATEXFLAGS
General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRIES
The maximum number of times that LaTeX will be re-run if the .log generated by the $LATEXCOM command
indicates that there are undefined references. The default is to try to resolve undefined references by re-running
LaTeX up to three times.

LATEXSUFFIXES
The list of suffixes of files that will be scanned for LaTeX implicit dependencies (\include or \import files).
The default list is:

[".tex", ".ltx", ".latex"]

LDMODULE
The linker for building loadable modules. By default, this is the same as $SHLINK.

LDMODULECOM
The command line for building loadable modules. On Mac OS X, this uses the $LDMODULE, $LDMODULEFLAGS
and $FRAMEWORKSFLAGS variables. On other systems, this is the same as $SHLINK.

LDMODULECOMSTR
If set, the string displayed when building loadable modules. If not set, then $LDMODULECOM (the command line)
is displayed.

LDMODULEEMITTER
Contains the emitter specification for the LoadableModule builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

LDMODULEFLAGS
General user options passed to the linker for building loadable modules.

LDMODULENOVERSIONSYMLINKS
Instructs the LoadableModule builder to not automatically create symlinks for versioned modules. Defaults
to $SHLIBNOVERSIONSYMLINKS

219

LDMODULEPREFIX
The prefix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same
as $SHLIBPREFIX.

_LDMODULESONAME
A macro that automatically generates loadable module's SONAME based on $TARGET,
$LDMODULEVERSION and $LDMODULESUFFIX. Used by LoadableModule builder when the linker tool
supports SONAME (e.g. gnulink).

LDMODULESUFFIX
The suffix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same
as $SHLIBSUFFIX.

LDMODULEVERSION
When this construction variable is defined, a versioned loadable module is created by LoadableModule
builder. This activates the $_LDMODULEVERSIONFLAGS and thus modifies the $LDMODULECOM as required,
adds the version number to the library name, and creates the symlinks that are needed. $LDMODULEVERSION
versions should exist in the same format as $SHLIBVERSION.

_LDMODULEVERSIONFLAGS
This macro automatically introduces extra flags to $LDMODULECOM when building versioned
LoadableModule (that is when $LDMODULEVERSION is set). _LDMODULEVERSIONFLAGS usually
adds $SHLIBVERSIONFLAGS and some extra dynamically generated options (such as -Wl,-soname=
$_LDMODULESONAME). It is unused by plain (unversioned) loadable modules.

LDMODULEVERSIONFLAGS
Extra flags added to $LDMODULECOM when building versioned LoadableModule. These flags are only used
when $LDMODULEVERSION is set.

LEX
The lexical analyzer generator.

LEX_HEADER_FILE
If supplied, generate a C header file with the name taken from this variable. Will be emitted as a --header-
file= command-line option. Use this in preference to including --header-file= in $LEXFLAGS directly.

LEX_TABLES_FILE
If supplied, write the lex tables to a file with the name taken from this variable. Will be emitted as a --tables-
file= command-line option. Use this in preference to including --tables-file= in $LEXFLAGS directly.

LEXCOM
The command line used to call the lexical analyzer generator to generate a source file.

LEXCOMSTR
The string displayed when generating a source file using the lexical analyzer generator. If this is not set, then
$LEXCOM (the command line) is displayed.

env = Environment(LEXCOMSTR="Lex'ing $TARGET from $SOURCES")

LEXFLAGS
General options passed to the lexical analyzer generator. In addition to passing the value on during invocation, the
lex tool also examines this construction variable for options which cause additional output files to be generated,
and adds those to the target list. Recognized for this purpose are GNU flex options --header-file= and --
tables-file=; the output file is named by the option argument.

220

Note that files specified by --header-file= and --tables-file= may not be properly handled by SCons
in all situations. Consider using $LEX_HEADER_FILE and $LEX_TABLES_FILE instead.

LEXUNISTD
Used only on windows environments to set a lex flag to prevent 'unistd.h' from being included. The default value
is '--nounistd'.

_LIBDIRFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
directories to be searched for library. The value of $_LIBDIRFLAGS is created by respectively prepending and
appending $LIBDIRPREFIX and $LIBDIRSUFFIX to each directory in $LIBPATH.

LIBDIRPREFIX
The prefix used to specify a library directory on the linker command line. This will be prepended to each directory
in the $LIBPATH construction variable when the $_LIBDIRFLAGS variable is automatically generated.

LIBDIRSUFFIX
The suffix used to specify a library directory on the linker command line. This will be appended to each directory
in the $LIBPATH construction variable when the $_LIBDIRFLAGS variable is automatically generated.

LIBEMITTER
Contains the emitter specification for the StaticLibrary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

_LIBFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
libraries to be linked with the resulting target. The value of $_LIBFLAGS is created by respectively prepending
and appending $LIBLINKPREFIX and $LIBLINKSUFFIX to each filename in $LIBS.

LIBLINKPREFIX
The prefix used to specify a library to link on the linker command line. This will be prepended to each library in
the $LIBS construction variable when the $_LIBFLAGS variable is automatically generated.

LIBLINKSUFFIX
The suffix used to specify a library to link on the linker command line. This will be appended to each library in
the $LIBS construction variable when the $_LIBFLAGS variable is automatically generated.

LIBLITERALPREFIX
If the linker supports command line syntax directing that the argument specifying a library should be searched
for literally (without modification), $LIBLITERALPREFIX can be set to that indicator. For example, the GNU
linker follows this rule: “ -l:foo searches the library path for a filename called foo, without converting it
to libfoo.so or libfoo.a. ” If $LIBLITERALPREFIX is set, SCons will not transform a string-valued
entry in $LIBS that starts with that string. The entry will still be surrounded with $LIBLINKPREFIX and
$LIBLINKSUFFIX on the command line. This is useful, for example, in directing that a static library be used
when both a static and dynamic library are available and linker policy is to prefer dynamic libraries. Compared
to the example in $LIBS,

env.Append(LIBS=":libmylib.a")

will let the linker select that specific (static) library name if found in the library search path. This differs from
using a File object to specify the static library, as the latter bypasses the library search path entirely.

LIBPATH
The list of directories that will be searched for libraries specified by the $LIBS construction variable. $LIBPATH
should be a list of path strings, or a single string, not a pathname list joined by Python's os.pathsep. Do not
put library search directives directly into $LINKFLAGS or $SHLINKFLAGS as the result will be non-portable.

221

Note: directory names in $LIBPATH will be looked-up relative to the directory of the SConscript file when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use the # prefix:

env = Environment(LIBPATH='#/libs')

The directory look-up can also be forced using the Dir function:

libs = Dir('libs')
env = Environment(LIBPATH=libs)

The directory list will be added to command lines through the automatically-generated $_LIBDIRFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$LIBDIRPREFIX and $LIBDIRSUFFIX construction variables to each directory in $LIBPATH. Any
command lines you define that need the $LIBPATH directory list should include $_LIBDIRFLAGS:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

LIBPREFIX
The prefix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBPREFIXES
A list of all legal prefixes for library file names on the current platform. When searching for library dependencies,
SCons will look for files with these prefixes, the base library name, and suffixes from the $LIBSUFFIXES list.

LIBS
The list of libraries that will be added to the link line for linking with any executable program, shared library, or
loadable module created by the construction environment or override.

For portability, a string-valued library name should include only the base library name, without prefixes such as
lib or suffixes such as .so or .dll. SCons will attempt to strip prefixes from the $LIBPREFIXES list and
suffixes from the $LIBSUFFIXES list, but depending on that behavior will make the build less portable: for
example, on a POSIX system, no attempt will be made to strip a suffix like .dll. Library name strings in $LIBS
should not include a path component: instead use $LIBPATH to direct the compiler to look for libraries in those
paths, plus any default paths the linker searches in. If $LIBLITERALPREFIX is set to a non-empty string, then a
string-valued $LIBS entry that starts with $LIBLITERALPREFIX will cause the rest of the entry to be searched
for for unmodified, but respecting normal library search paths (this is an exception to the guideline above about
leaving off the prefix/suffix from the library name).

If a $LIBS entry is a Node object (either as returned by a previous Builder call, or as the result of an explicit call
to File), the pathname from that Node will be added to $_LIBFLAGS, and thus to the link line, unmodified
- without adding $LIBLINKPREFIX or $LIBLINKSUFFIX. Such entries are searched for literally (including
any path component); the library search paths are not used. For example:

env.Append(LIBS=File('/tmp/mylib.so'))

For each Builder call that causes linking with libraries, SCons will add the libraries in the setting of $LIBS in
effect at that moment to the dependecy graph as dependencies of the target being generated.

The library list will transformed to command line arguments through the automatically-generated $_LIBFLAGS
construction variable which is constructed by respectively prepending and appending the values of the
$LIBLINKPREFIX and $LIBLINKSUFFIX construction variables to each library name.

222

Any command lines you define yourself that need the libraries from $LIBS should include $_LIBFLAGS (as
well as $_LIBDIRFLAGS) rather than $LIBS. For example:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

LIBSUFFIX
The suffix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBSUFFIXES
A list of all legal suffixes for library file names. on the current platform. When searching for library dependencies,
SCons will look for files with prefixes from the $LIBPREFIXES list, the base library name, and these suffixes.

LICENSE
The abbreviated name, preferably the SPDX code, of the license under which this project is released
(GPL-3.0, LGPL-2.1, BSD-2-Clause etc.). See http://www.opensource.org/licenses/alphabetical [http://
www.opensource.org/licenses/alphabetical] for a list of license names and SPDX codes.

See the Package builder.

LINESEPARATOR
The separator used by the Substfile and Textfile builders. This value is used between sources when
constructing the target. It defaults to the current system line separator.

LINGUAS_FILE
The $LINGUAS_FILE defines file(s) containing list of additional linguas to be processed by POInit,
POUpdate or MOFiles builders. It also affects Translate builder. If the variable contains a string, it defines
name of the list file. The $LINGUAS_FILE may be a list of file names as well. If $LINGUAS_FILE is set to
True (or non-zero numeric value), the list will be read from default file named LINGUAS.

LINK
The linker. See also $SHLINK for linking shared objects.

On POSIX systems (those using the link tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects a compiler driver matching the type of source files in use. So for example, if you
set $CXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

LINKCOM
The command line used to link object files into an executable. See also $SHLINKCOM for linking shared objects.

LINKCOMSTR
If set, the string displayed when object files are linked into an executable. If not set, then $LINKCOM (the command
line) is displayed. See also $SHLINKCOMSTR. for linking shared objects.

env = Environment(LINKCOMSTR = "Linking $TARGET")

LINKFLAGS
General user options passed to the linker. Note that this variable should not contain -l (or similar) options
for linking with the libraries listed in $LIBS, nor -L (or similar) library search path options that scons
generates automatically from $LIBPATH. See $_LIBFLAGS above, for the variable that expands to library-
link options, and $_LIBDIRFLAGS above, for the variable that expands to library search path options. See also
$SHLINKFLAGS. for linking shared objects.

http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical

223

M4
The M4 macro preprocessor.

M4COM
The command line used to pass files through the M4 macro preprocessor.

M4COMSTR
The string displayed when a file is passed through the M4 macro preprocessor. If this is not set, then $M4COM
(the command line) is displayed.

M4FLAGS
General options passed to the M4 macro preprocessor.

MAKEINDEX
The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEINDEXCOM
The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEINDEXCOMSTR
The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter. If this is not set, then $MAKEINDEXCOM (the command line) is displayed.

MAKEINDEXFLAGS
General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured
formatter and typesetter.

MAXLINELENGTH
The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer
than this many characters are linked via a temporary file name.

MIDL
The Microsoft IDL compiler.

MIDLCOM
The command line used to pass files to the Microsoft IDL compiler.

MIDLCOMSTR
The string displayed when the Microsoft IDL compiler is called. If this is not set, then $MIDLCOM (the command
line) is displayed.

MIDLFLAGS
General options passed to the Microsoft IDL compiler.

MOSUFFIX
Suffix used for MO files (default: '.mo'). See msgfmt tool and MOFiles builder.

MSGFMT
Absolute path to msgfmt(1) binary, found by Detect(). See msgfmt tool and MOFiles builder.

MSGFMTCOM
Complete command line to run msgfmt(1) program. See msgfmt tool and MOFiles builder.

MSGFMTCOMSTR
String to display when msgfmt(1) is invoked (default: '', which means ``print $MSGFMTCOM''). See msgfmt
tool and MOFiles builder.

224

MSGFMTFLAGS
Additional flags to msgfmt(1). See msgfmt tool and MOFiles builder.

MSGINIT
Path to msginit(1) program (found via Detect()). See msginit tool and POInit builder.

MSGINITCOM
Complete command line to run msginit(1) program. See msginit tool and POInit builder.

MSGINITCOMSTR
String to display when msginit(1) is invoked (default: '', which means ̀ `print $MSGINITCOM''). See msginit
tool and POInit builder.

MSGINITFLAGS
List of additional flags to msginit(1) (default: []). See msginit tool and POInit builder.

_MSGINITLOCALE
Internal ``macro''. Computes locale (language) name based on target filename (default:
'${TARGET.filebase}').

See msginit tool and POInit builder.

MSGMERGE
Absolute path to msgmerge(1) binary as found by Detect(). See msgmerge tool and POUpdate builder.

MSGMERGECOM
Complete command line to run msgmerge(1) command. See msgmerge tool and POUpdate builder.

MSGMERGECOMSTR
String to be displayed when msgmerge(1) is invoked (default: '', which means ``print $MSGMERGECOM''). See
msgmerge tool and POUpdate builder.

MSGMERGEFLAGS
Additional flags to msgmerge(1) command. See msgmerge tool and POUpdate builder.

MSSDK_DIR
The directory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MSSDK_VERSION
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.
Supported versions include 6.1, 6.0A, 6.0, 2003R2 and 2003R1.

MSVC_BATCH
When set to any true value, specifies that SCons should batch compilation of object files when calling the Microsoft
Visual C++ compiler. All compilations of source files from the same source directory that generate target files
in a same output directory and were configured in SCons using the same construction environment will be built
in a single call to the compiler. Only source files that have changed since their object files were built will be
passed to each compiler invocation (via the $CHANGED_SOURCES construction variable). Any compilations
where the object (target) file base name (minus the .obj) does not match the source file base name will be
compiled separately.

MSVC_NOTFOUND_POLICY
Specify the scons behavior when the Microsoft Visual C++ compiler is not detected.

The $MSVC_NOTFOUND_POLICY specifies the scons behavior when no msvc versions are detected or when the
requested msvc version is not detected.

The valid values for $MSVC_NOTFOUND_POLICY and the corresponding scons behavior are:

225

'Error' or 'Exception'
Raise an exception when no msvc versions are detected or when the requested msvc version is not detected.

'Warning' or 'Warn'
Issue a warning and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

'Ignore' or 'Suppress'
Take no action and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.

The $MSVC_NOTFOUND_POLICY is applied when any of the following conditions are satisfied:

• $MSVC_VERSION is specified, the default tools list is implicitly defined (i.e., the tools list is not specified),
and the default tools list contains one or more of the msvc tools.

• $MSVC_VERSION is specified, the default tools list is explicitly specified (e.g., tools=['default']),
and the default tools list contains one or more of the msvc tools.

• A non-default tools list is specified that contains one or more of the msvc tools (e.g., tools=['msvc',
'mslink']).

The $MSVC_NOTFOUND_POLICY is ignored when any of the following conditions are satisfied:

• $MSVC_VERSION is not specified and the default tools list is implicitly defined (i.e., the tools list is not
specified).

• $MSVC_VERSION is not specified and the default tools list is explicitly specified (e.g.,
tools=['default']).

• A non-default tool list is specified that does not contain any of the msvc tools (e.g., tools=['mingw']).

Important usage details:

• $MSVC_NOTFOUND_POLICY must be passed as an argument to the Environment constructor when an
msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the
Environment constructor. Otherwise, $MSVC_NOTFOUND_POLICY must be set before the first msvc tool
is loaded into the environment.

When $MSVC_NOTFOUND_POLICY is not specified, the default scons behavior is to issue a warning and
continue subject to the conditions listed above. The default scons behavior may change in the future.

New in version 4.4

MSVC_SCRIPT_ARGS
Pass user-defined arguments to the Microsoft Visual C++ batch file determined via autodetection.

$MSVC_SCRIPT_ARGS is available for msvc batch file arguments that do not have first-class support via
construction variables or when there is an issue with the appropriate construction variable validation. When
available, it is recommended to use the appropriate construction variables (e.g., $MSVC_TOOLSET_VERSION)
rather than $MSVC_SCRIPT_ARGS arguments.

The valid values for $MSVC_SCRIPT_ARGS are: None, a string, or a list of strings.

The $MSVC_SCRIPT_ARGS value is converted to a scalar string (i.e., "flattened"). The resulting scalar string, if
not empty, is passed as an argument to the msvc batch file determined via autodetection subject to the validation
conditions listed below.

226

$MSVC_SCRIPT_ARGS is ignored when the value is None and when the result from argument conversion is an
empty string. The validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:

• $MSVC_SCRIPT_ARGS is specified for Visual Studio 2013 and earlier.

• Multiple SDK version arguments (e.g., '10.0.20348.0') are specified in $MSVC_SCRIPT_ARGS.

• $MSVC_SDK_VERSION is specified and an SDK version argument (e.g., '10.0.20348.0') is
specified in $MSVC_SCRIPT_ARGS. Multiple SDK version declarations via $MSVC_SDK_VERSION and
$MSVC_SCRIPT_ARGS are not allowed.

• Multiple toolset version arguments (e.g., '-vcvars_ver=14.29') are specified in
$MSVC_SCRIPT_ARGS.

• $MSVC_TOOLSET_VERSION is specified and a toolset version argument (e.g., '-
vcvars_ver=14.29') is specified in $MSVC_SCRIPT_ARGS. Multiple toolset version declarations via
$MSVC_TOOLSET_VERSION and $MSVC_SCRIPT_ARGS are not allowed.

• Multiple spectre library arguments (e.g., '-vcvars_spectre_libs=spectre') are specified in
$MSVC_SCRIPT_ARGS.

• $MSVC_SPECTRE_LIBS is enabled and a spectre library argument (e.g., '-
vcvars_spectre_libs=spectre') is specified in $MSVC_SCRIPT_ARGS. Multiple spectre library
declarations via $MSVC_SPECTRE_LIBS and $MSVC_SCRIPT_ARGS are not allowed.

• Multiple UWP arguments (e.g., uwp or store) are specified in $MSVC_SCRIPT_ARGS.

• $MSVC_UWP_APP is enabled and a UWP argument (e.g., uwp or store) is specified in
$MSVC_SCRIPT_ARGS. Multiple UWP declarations via $MSVC_UWP_APP and $MSVC_SCRIPT_ARGS
are not allowed.

Example 1 - A Visual Studio 2022 build with an SDK version and a toolset version specified with a string
argument:

env = Environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS='10.0.20348.0 -vcvars_ver=14.29.30133')

Example 2 - A Visual Studio 2022 build with an SDK version and a toolset version specified with a list argument:

env = Environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS=['10.0.20348.0', '-vcvars_ver=14.29.30133'])

Important usage details:

• $MSVC_SCRIPT_ARGS must be passed as an argument to the Environment constructor when an msvc
tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment
constructor. Otherwise, $MSVC_SCRIPT_ARGS must be set before the first msvc tool is loaded into the
environment.

• Other than checking for multiple declarations as described above, $MSVC_SCRIPT_ARGS arguments are not
validated.

• Erroneous, inconsistent, and/or version incompatible $MSVC_SCRIPT_ARGS arguments are likely to result
in build failures for reasons that are not readily apparent and may be difficult to diagnose. The burden is on
the user to ensure that the arguments provided to the msvc batch file are valid, consistent and compatible with
the version of msvc selected.

227

New in version 4.4

MSVC_SCRIPTERROR_POLICY
Specify the scons behavior when Microsoft Visual C++ batch file errors are detected.

The $MSVC_SCRIPTERROR_POLICY specifies the scons behavior when msvc batch file errors are detected.
When $MSVC_SCRIPTERROR_POLICY is not specified, the default scons behavior is to suppress msvc batch
file error messages.

The root cause of msvc build failures may be difficult to diagnose. In these situations, setting the scons behavior
to issue a warning when msvc batch file errors are detected may produce additional diagnostic information.

The valid values for $MSVC_SCRIPTERROR_POLICY and the corresponding scons behavior are:

'Error' or 'Exception'
Raise an exception when msvc batch file errors are detected.

'Warning' or 'Warn'
Issue a warning when msvc batch file errors are detected.

'Ignore' or 'Suppress'
Suppress msvc batch file error messages.

New in version 4.4

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.

Example 1 - A Visual Studio 2022 build with user-defined script arguments:

env = environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS=['8.1', 'store', '-vcvars_ver=14.1'])
env.Program('hello', ['hello.c'], CCFLAGS='/MD', LIBS=['kernel32', 'user32', 'runtimeobject'])

Example 1 - Output fragment:

...
link /nologo /OUT:_build001\hello.exe kernel32.lib user32.lib runtimeobject.lib _build001\hello.obj
LINK : fatal error LNK1104: cannot open file 'MSVCRT.lib'
...

Example 2 - A Visual Studio 2022 build with user-defined script arguments and the script error policy set to issue
a warning when msvc batch file errors are detected:

env = environment(MSVC_VERSION='14.3', MSVC_SCRIPT_ARGS=['8.1', 'store', '-vcvars_ver=14.1'], MSVC_SCRIPTERROR_POLICY='warn')
env.Program('hello', ['hello.c'], CCFLAGS='/MD', LIBS=['kernel32', 'user32', 'runtimeobject'])

Example 2 - Output fragment:

...
scons: warning: vc script errors detected:
[ERROR:vcvars.bat] The UWP Application Platform requires a Windows 10 SDK.
[ERROR:vcvars.bat] WindowsSdkDir = "C:\Program Files (x86)\Windows Kits\8.1\"
[ERROR:vcvars.bat] host/target architecture is not supported : { x64 , x64 }
...
link /nologo /OUT:_build001\hello.exe kernel32.lib user32.lib runtimeobject.lib _build001\hello.obj

228

LINK : fatal error LNK1104: cannot open file 'MSVCRT.lib'

Important usage details:

• $MSVC_SCRIPTERROR_POLICY must be passed as an argument to the Environment constructor when
an msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the
Environment constructor. Otherwise, $MSVC_SCRIPTERROR_POLICY must be set before the first msvc
tool is loaded into the environment.

• Due to scons implementation details, not all Windows system environment variables are propagated to the
environment in which the msvc batch file is executed. Depending on Visual Studio version and installation
options, non-fatal msvc batch file error messages may be generated for ancillary tools which may not affect
builds with the msvc compiler. For this reason, caution is recommended when setting the script error policy
to raise an exception (e.g., 'Error').

New in version 4.4

MSVC_SDK_VERSION
Build with a specific version of the Microsoft Software Development Kit (SDK).

The valid values for $MSVC_SDK_VERSION are: None or a string containing the requested SDK version (e.g.,
'10.0.20348.0').

$MSVC_SDK_VERSION is ignored when the value is None and when the value is an empty string. The validation
conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:

• $MSVC_SDK_VERSION is specified for Visual Studio 2013 and earlier.

• $MSVC_SDK_VERSION is specified and an SDK version argument is specified in $MSVC_SCRIPT_ARGS.
Multiple SDK version declarations via $MSVC_SDK_VERSION and $MSVC_SCRIPT_ARGS are not allowed.

• The $MSVC_SDK_VERSION specified does not match any of the supported formats:

• '10.0.XXXXX.Y' [SDK 10.0]

• '8.1' [SDK 8.1]

• The system folder for the corresponding $MSVC_SDK_VERSION version is not found. The requested SDK
version does not appear to be installed.

• The $MSVC_SDK_VERSION version does not appear to support the requested platform type (i.e., UWP or
Desktop). The requested SDK version platform type components do not appear to be installed.

• The $MSVC_SDK_VERSION version is 8.1, the platform type is UWP, and the build tools selected are from
Visual Studio 2017 and later (i.e., $MSVC_VERSION must be '14.0' or $MSVC_TOOLSET_VERSION must
be '14.0').

Example 1 - A Visual Studio 2022 build with a specific Windows SDK version:

env = Environment(MSVC_VERSION='14.3', MSVC_SDK_VERSION='10.0.20348.0')

Example 2 - A Visual Studio 2022 build with a specific SDK version for the Universal Windows Platform:

env = Environment(MSVC_VERSION='14.3', MSVC_SDK_VERSION='10.0.20348.0', MSVC_UWP_APP=True)

229

Important usage details:

• $MSVC_SDK_VERSION must be passed as an argument to the Environment constructor when an msvc
tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment
constructor. Otherwise, $MSVC_SDK_VERSION must be set before the first msvc tool is loaded into the
environment.

• Should a SDK 10.0 version be installed that does not follow the naming scheme above, the SDK version will
need to be specified via $MSVC_SCRIPT_ARGS until the version number validation format can be extended.

• Should an exception be raised indicating that the SDK version is not found, verify that the requested SDK
version is installed with the necessary platform type components.

• There is a known issue with the Microsoft libraries when the target architecture is ARM64 and a Windows
11 SDK (version '10.0.22000.0' and later) is used with the v141 build tools and older v142 toolsets
(versions '14.28.29333' and earlier). Should build failures arise with these combinations of settings due
to unresolved symbols in the Microsoft libraries, $MSVC_SDK_VERSION may be employed to specify a
Windows 10 SDK (e.g., '10.0.20348.0') for the build.

New in version 4.4

MSVC_SPECTRE_LIBS
Build with the spectre-mitigated Microsoft Visual C++ libraries.

The valid values for $MSVC_SPECTRE_LIBS are: True, False, or None.

When $MSVC_SPECTRE_LIBS is enabled (i.e., True), the Microsoft Visual C++ environment will include the
paths to the spectre-mitigated implementations of the Microsoft Visual C++ libraries.

An exception is raised when any of the following conditions are satisfied:

• $MSVC_SPECTRE_LIBS is enabled for Visual Studio 2015 and earlier.

• $MSVC_SPECTRE_LIBS is enabled and a spectre library argument is specified in $MSVC_SCRIPT_ARGS.
Multiple spectre library declarations via $MSVC_SPECTRE_LIBS and $MSVC_SCRIPT_ARGS are not
allowed.

• $MSVC_SPECTRE_LIBS is enabled and the platform type is UWP. There are no spectre-mitigated libraries for
Universal Windows Platform (UWP) applications or components.

Example - A Visual Studio 2022 build with spectre mitigated Microsoft Visual C++ libraries:

env = Environment(MSVC_VERSION='14.3', MSVC_SPECTRE_LIBS=True)

Important usage details:

• $MSVC_SPECTRE_LIBS must be passed as an argument to the Environment constructor when an msvc
tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment
constructor. Otherwise, $MSVC_SPECTRE_LIBS must be set before the first msvc tool is loaded into the
environment.

• Additional compiler switches (e.g., /Qspectre) are necessary for including spectre mitigations when building
user artifacts. Refer to the Visual Studio documentation for details.

• The existence of the spectre libraries host architecture and target architecture folders are not verified when
$MSVC_SPECTRE_LIBS is enabled which could result in build failures. The burden is on the user to ensure
the requisite libraries with spectre mitigations are installed.

230

New in version 4.4

MSVC_TOOLSET_VERSION
Build with a specific Microsoft Visual C++ toolset version.

Specifying $MSVC_TOOLSET_VERSION does not affect the autodetection and selection of msvc instances. The
$MSVC_TOOLSET_VERSION is applied after an msvc instance is selected. This could be the default version of
msvc if $MSVC_VERSION is not specified.

The valid values for $MSVC_TOOLSET_VERSION are: None or a string containing the requested toolset version
(e.g., '14.29').

$MSVC_TOOLSET_VERSION is ignored when the value is None and when the value is an empty string. The
validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:

• $MSVC_TOOLSET_VERSION is specified for Visual Studio 2015 and earlier.

• $MSVC_TOOLSET_VERSION is specified and a toolset version argument is specified in
$MSVC_SCRIPT_ARGS. Multiple toolset version declarations via $MSVC_TOOLSET_VERSION and
$MSVC_SCRIPT_ARGS are not allowed.

• The $MSVC_TOOLSET_VERSION specified does not match any of the supported formats:

• 'XX.Y'

• 'XX.YY'

• 'XX.YY.ZZZZZ'

• 'XX.YY.Z' to 'XX.YY.ZZZZ' [scons extension not directly supported by the msvc batch files and may
be removed in the future]

• 'XX.YY.ZZ.N' [SxS format]

• 'XX.YY.ZZ.NN' [SxS format]

• The major msvc version prefix (i.e., 'XX.Y') of the $MSVC_TOOLSET_VERSION specified is for Visual
Studio 2013 and earlier (e.g., '12.0').

• The major msvc version prefix (i.e., 'XX.Y') of the $MSVC_TOOLSET_VERSION specified is greater than
the msvc version selected (e.g., '99.0').

• A system folder for the corresponding $MSVC_TOOLSET_VERSION version is not found. The requested
toolset version does not appear to be installed.

Toolset selection details:

• When $MSVC_TOOLSET_VERSION is not an SxS version number or a full toolset version number: the first
toolset version, ranked in descending order, that matches the $MSVC_TOOLSET_VERSION prefix is selected.

• When $MSVC_TOOLSET_VERSION is specified using the major msvc version prefix (i.e., 'XX.Y') and the
major msvc version is that of the latest release of Visual Studio, the selected toolset version may not be the
same as the default Microsoft Visual C++ toolset version.

In the latest release of Visual Studio, the default Microsoft Visual C++ toolset version is not necessarily the
toolset with the largest version number.

231

Example 1 - A default Visual Studio build with a partial toolset version specified:

env = Environment(MSVC_TOOLSET_VERSION='14.2')

Example 2 - A default Visual Studio build with a partial toolset version specified:

env = Environment(MSVC_TOOLSET_VERSION='14.29')

Example 3 - A Visual Studio 2022 build with a full toolset version specified:

env = Environment(MSVC_VERSION='14.3', MSVC_TOOLSET_VERSION='14.29.30133')

Example 4 - A Visual Studio 2022 build with an SxS toolset version specified:

env = Environment(MSVC_VERSION='14.3', MSVC_TOOLSET_VERSION='14.29.16.11')

Important usage details:

• $MSVC_TOOLSET_VERSION must be passed as an argument to the Environment constructor when an
msvc tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the
Environment constructor. Otherwise, $MSVC_TOOLSET_VERSION must be set before the first msvc tool
is loaded into the environment.

• The existence of the toolset host architecture and target architecture folders are not verified when
$MSVC_TOOLSET_VERSION is specified which could result in build failures. The burden is on the user to
ensure the requisite toolset target architecture build tools are installed.

New in version 4.4

MSVC_USE_SCRIPT
Use a batch script to set up the Microsoft Visual C++ compiler.

If set to the name of a Visual Studio .bat file (e.g. vcvars.bat), SCons will run that batch file instead of the
auto-detected one, and extract the relevant variables from the result (typically %INCLUDE%, %LIB%, and %PATH
%) for supplying to the build. This can be useful to force the use of a compiler version that SCons does not detect.
$MSVC_USE_SCRIPT_ARGS provides arguments passed to this script.

Setting $MSVC_USE_SCRIPT to None bypasses the Visual Studio autodetection entirely; use this if you are
running SCons in a Visual Studio cmd window and importing the shell's environment variables - that is, if you
are sure everything is set correctly already and you don't want SCons to change anything.

$MSVC_USE_SCRIPT ignores $MSVC_VERSION and $TARGET_ARCH.

Changed in version 4.4: new $MSVC_USE_SCRIPT_ARGS provides a way to pass arguments.

MSVC_USE_SCRIPT_ARGS
Provides arguments passed to the script $MSVC_USE_SCRIPT.

New in version 4.4

MSVC_USE_SETTINGS
Use a dictionary to set up the Microsoft Visual C++ compiler.

$MSVC_USE_SETTINGS is ignored when $MSVC_USE_SCRIPT is defined and/or when
$MSVC_USE_SETTINGS is set to None.

232

The dictionary is used to populate the environment with the relevant variables (typically %INCLUDE%, %LIB%,
and %PATH%) for supplying to the build. This can be useful to force the use of a compiler environment that SCons
does not configure correctly. This is an alternative to manually configuring the environment when bypassing
Visual Studio autodetection entirely by setting $MSVC_USE_SCRIPT to None.

Here is an example of configuring a build environment using the Microsoft Visual C++ compiler included in the
Microsoft SDK on a 64-bit host and building for a 64-bit architecture:

Microsoft SDK 6.0 (MSVC 8.0): 64-bit host and 64-bit target
msvc_use_settings = {
 "PATH": [
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Bin\\x64",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Bin\\x64",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Bin",
 "C:\\Windows\\Microsoft.NET\\Framework\\v2.0.50727",
 "C:\\Windows\\system32",
 "C:\\Windows",
 "C:\\Windows\\System32\\Wbem",
 "C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\"
],
 "INCLUDE": [
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Include",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Include\\Sys",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Include",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Include\\gl",
],
 "LIB": [
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\VC\\Lib\\x64",
 "C:\\Program Files\\Microsoft SDKs\\Windows\\v6.0\\Lib\\x64",
],
 "LIBPATH": [],
 "VSCMD_ARG_app_plat": [],
 "VCINSTALLDIR": [],
 "VCToolsInstallDir": []
}

Specifying MSVC_VERSION is recommended
env = Environment(MSVC_VERSION='8.0', MSVC_USE_SETTINGS=msvc_use_settings)

Important usage details:

• $MSVC_USE_SETTINGS must be passed as an argument to the Environment constructor when an msvc
tool (e.g., msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment
constructor. Otherwise, $MSVC_USE_SETTINGS must be set before the first msvc tool is loaded into the
environment.

• The dictionary content requirements are based on the internal msvc implementation and therefore may change
at any time. The burden is on the user to ensure the dictionary contents are minimally sufficient to ensure
successful builds.

New in version 4.4

MSVC_UWP_APP
Build with the Universal Windows Platform (UWP) application Microsoft Visual C++ libraries.

233

The valid values for $MSVC_UWP_APP are: True, '1', False, '0', or None.

When $MSVC_UWP_APP is enabled (i.e., True or '1'), the Microsoft Visual C++ environment will be set up
to point to the Windows Store compatible libraries and Microsoft Visual C++ runtimes. In doing so, any libraries
that are built will be able to be used in a UWP App and published to the Windows Store.

An exception is raised when any of the following conditions are satisfied:

• $MSVC_UWP_APP is enabled for Visual Studio 2013 and earlier.

• $MSVC_UWP_APP is enabled and a UWP argument is specified in $MSVC_SCRIPT_ARGS. Multiple UWP
declarations via $MSVC_UWP_APP and $MSVC_SCRIPT_ARGS are not allowed.

Example - A Visual Studio 2022 build for the Universal Windows Platform:

env = Environment(MSVC_VERSION='14.3', MSVC_UWP_APP=True)

Important usage details:

• $MSVC_UWP_APP must be passed as an argument to the Environment constructor when an msvc tool (e.g.,
msvc, msvs, etc.) is loaded via the default tools list or via a tools list passed to the Environment constructor.
Otherwise, $MSVC_UWP_APP must be set before the first msvc tool is loaded into the environment.

• The existence of the UWP libraries is not verified when $MSVC_UWP_APP is enabled which could result in
build failures. The burden is on the user to ensure the requisite UWP libraries are installed.

MSVC_VERSION
A string to select the preferred version of Microsoft Visual C++. If the specified version is unavailable and/or
unknown to SCons, a warning is issued showing the versions actually discovered, and the build will eventually
fail indicating a missing compiler binary. If $MSVC_VERSION is not set, SCons will (by default) select the latest
version of Microsoft Visual C++ installed on your system (excluding any preview versions).

Note

In order to take effect, $MSVC_VERSION must be set before the initial Microsoft Visual C++ compiler
discovery takes place. Discovery happens, at the latest, during the first call to the Environment
function, unless a tools list is specified which excludes the entire Microsoft Visual C++ toolchain -
that is, omits "defaults" and any specific tool module that refers to parts of the toolchain (msvc,
mslink, masm, midl and msvs). In this case, detection is deferred until any one of those tool modules
is invoked manually. The following two examples illustrate this:

MSVC_VERSION set as Environment is created
env = Environment(MSVC_VERSION='14.2')

Initialization deferred with empty tools, triggered manually
env = Environment(tools=[])
env['MSVC_VERSION'] = '14.2
env.Tool('msvc')
env.Tool('mslink')
env.Tool('msvs')

The valid values for $MSVC_VERSION represent major versions of the compiler, except that versions ending
in Exp refer to "Express" or "Express for Desktop" Visual Studio editions. Values that do not look like a valid
compiler version string are not supported.

234

The following table shows the correspondence of $MSVC_VERSION values to various version indicators ('x' is
used as a placeholder for a single digit that can vary).

SCons Key
Visual C++
Version

_MSVC_VER Visual Studio
Product MSBuild /

Visual Studio

"14.3" 14.3x 193x Visual Studio 2022 17.x, 17.1x

"14.2" 14.2x 192x Visual Studio 2019 16.x, 16.1x

"14.1" 14.1 or 14.1x 191x Visual Studio 2017 15.x

"14.1Exp" 14.1 or 14.1x 191x Visual Studio 2017
Express

15.x

"14.0" 14.0 1900 Visual Studio 2015 14.0

"14.0Exp" 14.0 1900 Visual Studio 2015
Express

14.0

"12.0" 12.0 1800 Visual Studio 2013 12.0

"12.0Exp" 12.0 1800 Visual Studio 2013
Express

12.0

"11.0" 11.0 1700 Visual Studio 2012 11.0

"11.0Exp" 11.0 1700 Visual Studio 2012
Express

11.0

"10.0" 10.0 1600 Visual Studio 2010 10.0

"10.0Exp" 10.0 1600 Visual C++ Express
2010

10.0

"9.0" 9.0 1500 Visual Studio 2008 9.0

"9.0Exp" 9.0 1500 Visual C++ Express
2008

9.0

"8.0" 8.0 1400 Visual Studio 2005 8.0

"8.0Exp" 8.0 1400 Visual C++ Express
2005

8.0

"7.1" 7.1 1300 Visual Studio .NET
2003

7.1

"7.0" 7.0 1200 Visual Studio .NET
2002

7.0

"6.0" 6.0 1100 Visual Studio 6.0 6.0

Note

• It is not necessary to install a Visual Studio IDE to build with SCons (for example, you can install only
Build Tools), but when a Visual Studio IDE is installed, additional builders such as MSVSSolution
and MSVSProject become available and correspond to the specified versions.

• Versions ending in Exp refer to historical "Express" or "Express for Desktop" Visual Studio editions,
which had feature limitations compared to the full editions. It is only necessary to specify the Exp
suffix to select the express edition when both express and non-express editions of the same product are
installed simulaneously. The Exp suffix is unnecessary, but accepted, when only the express edition
is installed.

235

The compilation environment can be further or more precisely specified through the use of several
other construction variables: see the descriptions of $MSVC_TOOLSET_VERSION, $MSVC_SDK_VERSION,
$MSVC_USE_SCRIPT, $MSVC_USE_SCRIPT_ARGS, and $MSVC_USE_SETTINGS.

MSVS
When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION
the version of MSVS being used (can be set via $MSVC_VERSION)

VERSIONS
the available versions of MSVS installed

VCINSTALLDIR
installed directory of Microsoft Visual C++

VSINSTALLDIR
installed directory of Visual Studio

FRAMEWORKDIR
installed directory of the .NET framework

FRAMEWORKVERSIONS
list of installed versions of the .NET framework, sorted latest to oldest.

FRAMEWORKVERSION
latest installed version of the .NET framework

FRAMEWORKSDKDIR
installed location of the .NET SDK.

PLATFORMSDKDIR
installed location of the Platform SDK.

PLATFORMSDK_MODULES
dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various
modules, and the values are 2-tuples where the first is the release date, and the second is the version number.

If a value is not set, it was not available in the registry. Visual Studio 2017 and later do not use the
registry for primary storage of this information, so typically for these versions only PROJECTSUFFIX and
SOLUTIONSUFFIX will be set.

MSVS_ARCH
Sets the architecture for which the generated project(s) should build.

The default value is x86. amd64 is also supported by SCons for most Visual Studio versions. Since Visual Studio
2015 arm is supported, and since Visual Studio 2017 arm64 is supported. Trying to set $MSVS_ARCH to an
architecture that's not supported for a given Visual Studio version will generate an error.

MSVS_PROJECT_GUID
The string placed in a generated Microsoft Visual C++ project file as the value of the ProjectGUID attribute.
There is no default value. If not defined, a new GUID is generated.

MSVS_SCC_AUX_PATH
The path name placed in a generated Microsoft Visual C++ project file as the value of the SccAuxPath attribute
if the MSVS_SCC_PROVIDER construction variable is also set. There is no default value.

236

MSVS_SCC_CONNECTION_ROOT
The root path of projects in your SCC workspace, i.e the path under which all project and solution
files will be generated. It is used as a reference path from which the relative paths of the generated
Microsoft Visual C++ project and solution files are computed. The relative project file path is
placed as the value of the SccLocalPath attribute of the project file and as the values of the
SccProjectFilePathRelativizedFromConnection[i] (where [i] ranges from 0 to the number
of projects in the solution) attributes of the GlobalSection(SourceCodeControl) section of the
Microsoft Visual Studio solution file. Similarly the relative solution file path is placed as the values of the
SccLocalPath[i] (where [i] ranges from 0 to the number of projects in the solution) attributes of the
GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file. This is used
only if the MSVS_SCC_PROVIDER construction variable is also set. The default value is the current working
directory.

MSVS_SCC_PROJECT_NAME
The project name placed in a generated Microsoft Visual C++ project file as the value of the SccProjectName
attribute if the MSVS_SCC_PROVIDER construction variable is also set. In this case the string is also placed in the
SccProjectName0 attribute of the GlobalSection(SourceCodeControl) section of the Microsoft
Visual Studio solution file. There is no default value.

MSVS_SCC_PROVIDER
The string placed in a generated Microsoft Visual C++ project file as the value of the SccProvider attribute.
The string is also placed in the SccProvider0 attribute of the GlobalSection(SourceCodeControl)
section of the Microsoft Visual Studio solution file. There is no default value.

MSVS_VERSION
Set the preferred version of Microsoft Visual Studio to use.

If $MSVS_VERSION is not set, SCons will (by default) select the latest version of Visual Studio installed on your
system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. You can override
this by specifying the $MSVS_VERSION variable when initializing the Environment, setting it to the appropriate
version ('6.0' or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

Deprecated since 1.3.0: $MSVS_VERSION is deprecated in favor of $MSVC_VERSION. As a transitional aid,
if $MSVS_VERSION is set and $MSVC_VERSION is not, $MSVC_VERSION will be initialized to the value of
$MSVS_VERSION. An error is raised if If both are set and have different values,

MSVSBUILDCOM
The build command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual
Studio invoke SCons with any specified build targets.

MSVSCLEANCOM
The clean command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual
Studio invoke SCons with the -c option to remove any specified targets.

MSVSENCODING
The encoding string placed in a generated Microsoft Visual C++ project file. The default is encoding
Windows-1252.

MSVSPROJECTCOM
The action used to generate Microsoft Visual C++ project files.

MSVSPROJECTSUFFIX
The suffix used for Microsoft Visual C++ project (DSP) files. The default value is .vcxproj when using Visual
Studio 2010 and later, .vcproj when using Visual Studio versions between 2002 and 2008, and .dsp when
using Visual Studio 6.0.

237

MSVSREBUILDCOM
The rebuild command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual
Studio invoke SCons with any specified rebuild targets.

MSVSSCONS
The SCons used in generated Microsoft Visual C++ project files. The default is the version of SCons being used
to generate the project file.

MSVSSCONSCOM
The default SCons command used in generated Microsoft Visual C++ project files.

MSVSSCONSCRIPT
The sconscript file (that is, SConstruct or SConscript file) that will be invoked by Microsoft Visual C++
project files (through the $MSVSSCONSCOM variable). The default is the same sconscript file that contains the
call to MSVSProject to build the project file.

MSVSSCONSFLAGS
The SCons flags used in generated Microsoft Visual C++ project files.

MSVSSOLUTIONCOM
The action used to generate Microsoft Visual Studio solution files.

MSVSSOLUTIONSUFFIX
The suffix used for Microsoft Visual Studio solution (DSW) files. The default value is .sln when using Visual
Studio version 7.x (.NET 2002) and later, and .dsw when using Visual Studio 6.0.

MT
The program used on Windows systems to embed manifests into DLLs and EXEs. See also
$WINDOWS_EMBED_MANIFEST.

MTEXECOM
The Windows command line used to embed manifests into executables. See also $MTSHLIBCOM.

MTFLAGS
Flags passed to the $MT manifest embedding program (Windows only).

MTSHLIBCOM
The Windows command line used to embed manifests into shared libraries (DLLs). See also $MTEXECOM.

MWCW_VERSION
The version number of the MetroWerks CodeWarrior C compiler to be used.

MWCW_VERSIONS
A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NAME
Specfies the name of the project to package.

See the Package builder.

NINJA_ALIAS_NAME
The name of the alias target which will cause SCons to create the ninja build file, and then (optionally) run ninja.
The default value is generate-ninja.

NINJA_CMD_ARGS
A string which will pass arguments through SCons to the ninja command when scons executes ninja. Has no effect
if $NINJA_DISABLE_AUTO_RUN is set.

238

This value can also be passed on the command line:

scons NINJA_CMD_ARGS=-v
or
scons NINJA_CMD_ARGS="-v -j 3"

NINJA_COMPDB_EXPAND
Boolean value to instruct ninja to expand the command line arguments normally put into response files. If true,
prevents unexpanded lines in the compilation database like “gcc @rsp_file” and instead yields expanded
lines like “gcc -c -o myfile.o myfile.c -Ia -DXYZ”.

Ninja's compdb tool added the -x flag in Ninja V1.9.0

NINJA_DEPFILE_PARSE_FORMAT
Determines the type of format ninja should expect when parsing header include depfiles. Can be msvc, gcc, or
clang. The msvc option corresponds to /showIncludes format, and gcc or clang correspond to -MMD
-MF.

NINJA_DIR
The builddir value. Propagates directly into the generated ninja build file. From Ninja's docs: “ A directory for
some Ninja output files. ... (You can also store other build output in this directory.) ” The default value is .ninja.

NINJA_DISABLE_AUTO_RUN
Boolean. Default: False. If true, SCons will not run ninja automatically after creating the ninja build file.

If not explicitly set, this will be set to True if --disable_execute_ninja or
SetOption('disable_execute_ninja', True) is seen.

NINJA_ENV_VAR_CACHE
A string that sets the environment for any environment variables that differ between the OS environment and the
SCons execution environment.

It will be compatible with the default shell of the operating system.

If not explicitly set, SCons will generate this dynamically from the execution environment stored in the current
construction environment (e.g. env['ENV']) where those values differ from the existing shell..

NINJA_FILE_NAME
The filename for the generated Ninja build file. The default is ninja.build.

NINJA_FORCE_SCONS_BUILD
If true, causes the build nodes to callback to scons instead of using ninja to build them. This is intended to be
passed to the environment on the builder invocation. It is useful if you have a build node which does something
which is not easily translated into ninja.

NINJA_GENERATED_SOURCE_ALIAS_NAME
A string matching the name of a user defined alias which represents a list of all generated sources. This will
prevent the auto-detection of generated sources from $NINJA_GENERATED_SOURCE_SUFFIXES. Then all
other source files will be made to depend on this in the ninja build file, forcing the generated sources to be built first.

NINJA_GENERATED_SOURCE_SUFFIXES
The list of source file suffixes which are generated by SCons build steps. All source files which match these
suffixes will be added to the _generated_sources alias in the output ninja build file. Then all other source files will
be made to depend on this in the ninja build file, forcing the generated sources to be built first.

239

NINJA_MSVC_DEPS_PREFIX
The msvc_deps_prefix string. Propagates directly into the generated ninja build file. From Ninja's docs:
“defines the string which should be stripped from msvc's /showIncludes output”

NINJA_POOL
Set the ninja_pool for this or all targets in scope for this env var.

NINJA_REGENERATE_DEPS
A generator function used to create a ninja depfile which includes all the files which would require SCons to be
invoked if they change. Or a list of said files.

_NINJA_REGENERATE_DEPS_FUNC
Internal value used to specify the function to call with argument env to generate the list of files which if changed
would require the ninja build file to be regenerated.

NINJA_SCONS_DAEMON_KEEP_ALIVE
The number of seconds for the SCons deamon launched by ninja to stay alive. (Default: 180000)

NINJA_SCONS_DAEMON_PORT
The TCP/IP port for the SCons daemon to listen on. NOTE: You cannot use a port already being listened to on
your build machine. (Default: random number between 10000,60000)

NINJA_SYNTAX
The path to a custom ninja_syntax.py file which is used in generation. The tool currently assumes you have
ninja installed as a Python module and grabs the syntax file from that installation if $NINJA_SYNTAX is not
explicitly set.

no_import_lib
When set to non-zero, suppresses creation of a corresponding Windows static import lib by the SharedLibrary
builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an
export (.exp) file when using Microsoft Visual Studio.

OBJPREFIX
The prefix used for (static) object file names.

OBJSUFFIX
The suffix used for (static) object file names.

PACKAGEROOT
Specifies the directory where all files in resulting archive will be placed if applicable. The default value is “$NAME-
$VERSION”.

See the Package builder.

PACKAGETYPE
Selects the package type to build when using the Package builder. May be a string or list of strings. See the
docuentation for the builder for the currently supported types.

$PACKAGETYPE may be overridden with the --package-type command line option.

See the Package builder.

PACKAGEVERSION
The version of the package (not the underlying project). This is currently only used by the rpm packager and
should reflect changes in the packaging, not the underlying project code itself.

See the Package builder.

240

PCH
A node for the Microsoft Visual C++ precompiled header that will be used when compiling object files. This
variable is ignored by tools other than Microsoft Visual C++. When this variable is defined, SCons will add options
to the compiler command line to cause it to use the precompiled header, and will also set up the dependencies
for the PCH file. Examples:

env['PCH'] = File('StdAfx.pch')
env['PCH'] = env.PCH('pch.cc')[0]

PCHCOM
The command line used by the PCH builder to generated a precompiled header.

PCHCOMSTR
The string displayed when generating a precompiled header. If not set, then $PCHCOM (the command line) is
displayed.

PCHPDBFLAGS
A construction variable that, when expanded, adds the /yD flag to the command line only if the $PDB construction
variable is set.

PCHSTOP
This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than
Microsoft Visual C++, or when the PCH variable is not being used. When this variable is define it must be a string
that is the name of the header that is included at the end of the precompiled portion of the source files, or the
empty string if the "#pragma hrdstop" construct is being used:

env['PCHSTOP'] = 'StdAfx.h'

PDB
The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and
programs. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined
SCons will add options to the compiler and linker command line to cause them to generate external debugging
information, and will also set up the dependencies for the PDB file. Example:

env['PDB'] = 'hello.pdb'

The Microsoft Visual C++ compiler switch that SCons uses by default to generate PDB information is /Z7. This
works correctly with parallel (-j) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug
information embedded into a static library. Using the /Zi instead may yield improved link-time performance,
although parallel builds will no longer work. You can generate PDB files with the /Zi switch by overriding the
default $CCPDBFLAGS variable; see the entry for that variable for specific examples.

PDFLATEX
The pdflatex utility.

PDFLATEXCOM
The command line used to call the pdflatex utility.

PDFLATEXCOMSTR
The string displayed when calling the pdflatex utility. If this is not set, then $PDFLATEXCOM (the command line)
is displayed.

241

env = Environment(PDFLATEX;COMSTR = "Building $TARGET from LaTeX input $SOURCES")

PDFLATEXFLAGS
General options passed to the pdflatex utility.

PDFPREFIX
The prefix used for PDF file names.

PDFSUFFIX
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM
The command line used to call the pdftex utility.

PDFTEXCOMSTR
The string displayed when calling the pdftex utility. If this is not set, then $PDFTEXCOM (the command line)
is displayed.

env = Environment(PDFTEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

PDFTEXFLAGS
General options passed to the pdftex utility.

PKGCHK
On Solaris systems, the package-checking program that will be used (along with $PKGINFO) to look for installed
versions of the Sun PRO C++ compiler. The default is /usr/sbin/pgkchk.

PKGINFO
On Solaris systems, the package information program that will be used (along with $PKGCHK) to look for installed
versions of the Sun PRO C++ compiler. The default is pkginfo.

PLATFORM
The name of the platform used to create this construction environment. SCons sets this when initializing the
platform, which by default is auto-detected (see the platform argument to Environment).

env = Environment(tools=[])
if env['PLATFORM'] == 'cygwin':
 Tool('mingw')(env)
else:
 Tool('msvc')(env)

POAUTOINIT
The $POAUTOINIT variable, if set to True (on non-zero numeric value), let the msginit tool to automatically
initialize missing PO files with msginit(1). This applies to both, POInit and POUpdate builders (and others
that use any of them).

POCREATE_ALIAS
Common alias for all PO files created with POInit builder (default: 'po-create'). See msginit tool and
POInit builder.

242

POSUFFIX
Suffix used for PO files (default: '.po') See msginit tool and POInit builder.

POTDOMAIN
The $POTDOMAIN defines default domain, used to generate POT filename as $POTDOMAIN.pot when no POT
file name is provided by the user. This applies to POTUpdate, POInit and POUpdate builders (and builders,
that use them, e.g. Translate). Normally (if $POTDOMAIN is not defined), the builders use messages.pot
as default POT file name.

POTSUFFIX
Suffix used for PO Template files (default: '.pot'). See xgettext tool and POTUpdate builder.

POTUPDATE_ALIAS
Name of the common phony target for all PO Templates created with POUpdate (default: 'pot-update').
See xgettext tool and POTUpdate builder.

POUPDATE_ALIAS
Common alias for all PO files being defined with POUpdate builder (default: 'po-update'). See msgmerge
tool and POUpdate builder.

PRINT_CMD_LINE_FUNC
A Python function used to print the command lines as they are executed (assuming command printing is not
disabled by the -q or -s options or their equivalents). The function must accept four arguments: s, target,
source and env. s is a string showing the command being executed, target, is the target being built (file
node, list, or string name(s)), source, is the source(s) used (file node, list, or string name(s)), and env is the
environment being used.

The function must do the printing itself. The default implementation, used if this variable is not set or is None,
is to just print the string, as in:

def print_cmd_line(s, target, source, env):
 sys.stdout.write(s + "\n")

Here is an example of a more interesting function:

def print_cmd_line(s, target, source, env):
 sys.stdout.write(
 "Building %s -> %s...\n"
 % (
 ' and '.join([str(x) for x in source]),
 ' and '.join([str(x) for x in target]),
)
)

env = Environment(PRINT_CMD_LINE_FUNC=print_cmd_line)
env.Program('foo', ['foo.c', 'bar.c'])

This prints:

...
scons: Building targets ...
Building bar.c -> bar.o...
Building foo.c -> foo.o...

243

Building foo.o and bar.o -> foo...
scons: done building targets.

Another example could be a function that logs the actual commands to a file.

PROGEMITTER
Contains the emitter specification for the Program builder. The manpage section "Builder Objects" contains
general information on specifying emitters.

PROGPREFIX
The prefix used for executable file names.

PROGSUFFIX
The suffix used for executable file names.

PSCOM
The command line used to convert TeX DVI files into a PostScript file.

PSCOMSTR
The string displayed when a TeX DVI file is converted into a PostScript file. If this is not set, then $PSCOM (the
command line) is displayed.

PSPREFIX
The prefix used for PostScript file names.

PSSUFFIX
The prefix used for PostScript file names.

QT3_AUTOSCAN
Turn off scanning for mocable files. Use the Moc Builder to explicitly specify files to run moc on.

Changed in 4.5.0: renamed from QT_AUTOSCAN.

QT3_BINPATH
The path where the Qt binaries are installed. The default value is '$QT3DIR/bin'.

Changed in 4.5.0: renamed from QT_BINPATH.

QT3_CPPPATH
The path where the Qt header files are installed. The default value is '$QT3DIR/include'. Note: If you set this
variable to None, the tool won't change the $CPPPATH construction variable.

Changed in 4.5.0: renamed from QT_CPPPATH.

QT3_DEBUG
Prints lots of debugging information while scanning for moc files.

Changed in 4.5.0: renamed from QT_DEBUG.

QT3_LIB
Default value is 'qt'. You may want to set this to 'qt-mt'. Note: If you set this variable to None, the tool
won't change the $LIBS variable.

Changed in 4.5.0: renamed from QT_LIB.

QT3_LIBPATH
The path where the Qt libraries are installed. The default value is '$QT3DIR/lib'. Note: If you set this variable
to None, the tool won't change the $LIBPATH construction variable.

244

Changed in 4.5.0: renamed from QT_LIBPATH.

QT3_MOC
Default value is '$QT3_BINPATH/moc'.

QT3_MOCCXXPREFIX
Default value is ''. Prefix for moc output files when source is a C++ file.

QT3_MOCCXXSUFFIX
Default value is '.moc'. Suffix for moc output files when source is a C++ file.

Changed in 4.5.0: renamed from QT_MOCCXXSUFFIX.

QT3_MOCFROMCXXCOM
Command to generate a moc file from a C++ file.

Changed in 4.5.0: renamed from QT_MOCFROMCXXCOM.

QT3_MOCFROMCXXCOMSTR
The string displayed when generating a moc file from a C++ file. If this is not set, then $QT3_MOCFROMCXXCOM
(the command line) is displayed.

Changed in 4.5.0: renamed from QT_MOCFROMCXXCOMSTR.

QT3_MOCFROMCXXFLAGS
Default value is '-i'. These flags are passed to moc when moccing a C++ file.

Changed in 4.5.0: renamed from QT_MOCFROMCXXFLAGS.

QT3_MOCFROMHCOM
Command to generate a moc file from a header.

Changed in 4.5.0: renamed from QT_MOCFROMSHCOM.

QT3_MOCFROMHCOMSTR
The string displayed when generating a moc file from a C++ file. If this is not set, then $QT3_MOCFROMHCOM
(the command line) is displayed.

Changed in 4.5.0: renamed from QT_MOCFROMSHCOMSTR.

QT3_MOCFROMHFLAGS
Default value is ''. These flags are passed to moc when moccing a header file.

Changed in 4.5.0: renamed from QT_MOCFROMSHFLAGS.

QT3_MOCHPREFIX
Default value is 'moc_'. Prefix for moc output files when source is a header.

Changed in 4.5.0: renamed from QT_MOCHPREFIX.

QT3_MOCHSUFFIX
Default value is '$CXXFILESUFFIX'. Suffix for moc output files when source is a header.

Changed in 4.5.0: renamed from QT_MOCHSUFFIX.

QT3_UIC
Default value is '$QT3_BINPATH/uic'.

245

Changed in 4.5.0: renamed from QT_UIC.

QT3_UICCOM
Command to generate header files from .ui files.

Changed in 4.5.0: renamed from QT_UICCOM.

QT3_UICCOMSTR
The string displayed when generating header files from .ui files. If this is not set, then $QT3_UICCOM (the
command line) is displayed.

Changed in 4.5.0: renamed from QT_UICCOMSTR.

QT3_UICDECLFLAGS
Default value is ''. These flags are passed to uic when creating a header file from a .ui file.

Changed in 4.5.0: renamed from QT_UICDECLFLAGS.

QT3_UICDECLPREFIX
Default value is ''. Prefix for uic generated header files.

Changed in 4.5.0: renamed from QT_UICDECLPREFIX.

QT3_UICDECLSUFFIX
Default value is '.h'. Suffix for uic generated header files.

Changed in 4.5.0: renamed from QT_UICDECLSUFFIX.

QT3_UICIMPLFLAGS
Default value is ''. These flags are passed to uic when creating a C++ file from a .ui file.

Changed in 4.5.0: renamed from QT_UICIMPFLAGS.

QT3_UICIMPLPREFIX
Default value is 'uic_'. Prefix for uic generated implementation files.

Changed in 4.5.0: renamed from QT_UICIMPLPREFIX.

QT3_UICIMPLSUFFIX
Default value is '$CXXFILESUFFIX'. Suffix for uic generated implementation files.

Changed in 4.5.0: renamed from QT_UICIMPLSUFFIX.

QT3_UISUFFIX
Default value is '.ui'. Suffix of designer input files.

Changed in 4.5.0: renamed from QT_UISUFFIX.

QT3DIR
The path to the Qt installation to build against. If not already set, qt3 tool tries to obtain this from os.environ;
if not found there, it tries to make a guess.

Changed in 4.5.0: renamed from QTDIR.

RANLIB
The archive indexer.

RANLIBCOM
The command line used to index a static library archive.

246

RANLIBCOMSTR
The string displayed when a static library archive is indexed. If this is not set, then $RANLIBCOM (the command
line) is displayed.

env = Environment(RANLIBCOMSTR = "Indexing $TARGET")

RANLIBFLAGS
General options passed to the archive indexer.

RC
The resource compiler used to build a Microsoft Visual C++ resource file.

RCCOM
The command line used to build a Microsoft Visual C++ resource file.

RCCOMSTR
The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this
is not set, then $RCCOM (the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCINCFLAGS
An automatically-generated construction variable containing the command-line options for specifying directories
to be searched by the resource compiler. The value of $RCINCFLAGS is created by respectively prepending and
appending $RCINCPREFIX and $RCINCSUFFIX to the beginning and end of each directory in $CPPPATH.

RCINCPREFIX
The prefix (flag) used to specify an include directory on the resource compiler command line. This will be
prepended to the beginning of each directory in the $CPPPATH construction variable when the $RCINCFLAGS
variable is expanded.

RCINCSUFFIX
The suffix used to specify an include directory on the resource compiler command line. This will be appended to
the end of each directory in the $CPPPATH construction variable when the $RCINCFLAGS variable is expanded.

RDirs
A function that converts a string into a list of Dir instances by searching the repositories.

REGSVR
The program used on Windows systems to register a newly-built DLL library whenever the SharedLibrary
builder is passed a keyword argument of register=True.

REGSVRCOM
The command line used on Windows systems to register a newly-built DLL library whenever the
SharedLibrary builder is passed a keyword argument of register=True.

REGSVRCOMSTR
The string displayed when registering a newly-built DLL file. If this is not set, then $REGSVRCOM (the command
line) is displayed.

REGSVRFLAGS
Flags passed to the DLL registration program on Windows systems when a newly-built DLL library is registered.
By default, this includes the /s that prevents dialog boxes from popping up and requiring user attention.

RMIC
The Java RMI stub compiler.

247

RMICCOM
The command line used to compile stub and skeleton class files from Java classes that contain RMI
implementations. Any options specified in the $RMICFLAGS construction variable are included on this command
line.

RMICCOMSTR
The string displayed when compiling stub and skeleton class files from Java classes that contain RMI
implementations. If this is not set, then $RMICCOM (the command line) is displayed.

env = Environment(
 RMICCOMSTR="Generating stub/skeleton class files $TARGETS from $SOURCES"
)

RMICFLAGS
General options passed to the Java RMI stub compiler.

RPATH
A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink),
IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that don't support it. Note that the
paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make
it absolute yourself.

_RPATH
An automatically-generated construction variable containing the rpath flags to be used when linking a program
with shared libraries. The value of $_RPATH is created by respectively prepending $RPATHPREFIX and
appending $RPATHSUFFIX to the beginning and end of each directory in $RPATH.

RPATHPREFIX
The prefix used to specify a directory to be searched for shared libraries when running programs. This will be
prepended to the beginning of each directory in the $RPATH construction variable when the $_RPATH variable
is automatically generated.

RPATHSUFFIX
The suffix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is
automatically generated.

RPCGEN
The RPC protocol compiler.

RPCGENCLIENTFLAGS
Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENFLAGS
General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS
Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENSERVICEFLAGS
Options passed to the RPC protocol compiler when generating server side stubs. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

248

RPCGENXDRFLAGS
Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

SCANNERS
A list of the available implicit dependency scanners. New file scanners may be added by appending to this list,
although the more flexible approach is to associate scanners with a specific Builder. See the manpage sections
"Builder Objects" and "Scanner Objects" for more information.

SCONS_HOME
The (optional) path to the SCons library directory, initialized from the external environment. If set, this is used
to construct a shorter and more efficient search path in the $MSVSSCONS command line executed from C++
project files.

SHCC
The C compiler used for generating shared-library objects. See also $CC for compiling to static objects.

SHCCCOM
The command line used to compile a C source file to a shared-library object file. Any options specified in the
$SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line. See
also $CCCOM for compiling to static objects.

SHCCCOMSTR
If set, the string displayed when a C source file is compiled to a shared object file. If not set, then $SHCCCOM (the
command line) is displayed. See also $CCCOMSTR for compiling to static objects.

env = Environment(SHCCCOMSTR = "Compiling shared object $TARGET")

SHCCFLAGS
Options that are passed to the C and C++ compilers to generate shared-library objects. See also $CCFLAGS for
compiling to static objects.

SHCFLAGS
Options that are passed to the C compiler (only; not C++) to generate shared-library objects. See also $CFLAGS
for compiling to static objects.

SHCXX
The C++ compiler used for generating shared-library objects. See also $CXX for compiling to static objects.

SHCXXCOM
The command line used to compile a C++ source file to a shared-library object file. Any options specified in the
$SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line. See also $CXXCOM
for compiling to static objects.

SHCXXCOMSTR
If set, the string displayed when a C++ source file is compiled to a shared object file. If not set, then $SHCXXCOM
(the command line) is displayed. See also $CXXCOMSTR for compiling to static objects.

env = Environment(SHCXXCOMSTR = "Compiling shared object $TARGET")

SHCXXFLAGS
Options that are passed to the C++ compiler to generate shared-library objects. See also $CXXFLAGS for
compiling to static objects.

249

SHDC
The name of the compiler to use when compiling D source destined to be in a shared objects. See also $DC for
compiling to static objects.

SHDCOM
The command line to use when compiling code to be part of shared objects. See also $DCOM for compiling to
static objects.

SHDCOMSTR
If set, the string displayed when a D source file is compiled to a (shared) object file. If not set, then $SHDCOM
(the command line) is displayed. See also $DCOMSTR for compiling to static objects.

SHDLIBVERSIONFLAGS
Extra flags added to $SHDLINKCOM when building versioned SharedLibrary. These flags are only used
when $SHLIBVERSION is set.

SHDLINK
The linker to use when creating shared objects for code bases include D sources. See also $DLINK for linking
static objects.

SHDLINKCOM
The command line to use when generating shared objects. See also $DLINKCOM for linking static objects.

SHDLINKFLAGS
The list of flags to use when generating a shared object. See also $DLINKFLAGS for linking static objects.

SHELL
A string naming the shell program that will be passed to the $SPAWN function. See the $SPAWN construction
variable for more information.

SHELL_ENV_GENERATORS
A hook allowing the execution environment to be modified prior to the actual execution of a command line from
an action via the spawner function defined by $SPAWN. Allows substitution based on targets and sources, as well
as values from the construction environment, adding extra environment variables, etc.

The value must be a list (or other iterable) of functions which each generate or alter the execution environment
dictionary. The first function will be passed a copy of the initial execution environment ($ENV in the current
construction environment); the dictionary returned by that function is passed to the next, until the iterable is
exhausted and the result returned for use by the command spawner. The original execution environment is not
modified.

Each function provided in $SHELL_ENV_GENERATORS must accept four arguments and return a dictionary:
env is the construction environment for this action; target is the list of targets associated with this action;
source is the list of sources associated with this action; and shell_env is the current dictionary after
iterating any previous $SHELL_ENV_GENERATORS functions (this can be compared to the original execution
environment, which is available as env['ENV'], to detect any changes).

Example:

def custom_shell_env(env, target, source, shell_env):
 """customize shell_env if desired"""
 if str(target[0]) == 'special_target':
 shell_env['SPECIAL_VAR'] = env.subst('SOME_VAR', target=target, source=source)
 return shell_env

250

env["SHELL_ENV_GENERATORS"] = [custom_shell_env]

Available since 4.4

SHF03
The Fortran 03 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF03 if
you need to use a specific compiler or compiler version for Fortran 03 files.

SHF03COM
The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to
set $SHF03COM if you need to use a specific command line for Fortran 03 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF03COMSTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file. If not set, then
$SHF03COM or $SHFORTRANCOM (the command line) is displayed.

SHF03FLAGS
Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set
$SHF03FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF03PPCOM
The command line used to compile a Fortran 03 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF03FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF03PPCOM if you need to use a specific
C-preprocessor command line for Fortran 03 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF03PPCOMSTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF03PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF08
The Fortran 08 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF08 if
you need to use a specific compiler or compiler version for Fortran 08 files.

SHF08COM
The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to
set $SHF08COM if you need to use a specific command line for Fortran 08 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF08COMSTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file. If not set, then
$SHF08COM or $SHFORTRANCOM (the command line) is displayed.

SHF08FLAGS
Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set
$SHF08FLAGS if you need to define specific user options for Fortran 08 files. You should normally set the

251

$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF08PPCOM
The command line used to compile a Fortran 08 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF08FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF08PPCOM if you need to use a specific
C-preprocessor command line for Fortran 08 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF08PPCOMSTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF08PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF77
The Fortran 77 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF77 if
you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM
The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to
set $SHF77COM if you need to use a specific command line for Fortran 77 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF77COMSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file. If not set, then
$SHF77COM or $SHFORTRANCOM (the command line) is displayed.

SHF77FLAGS
Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set
$SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF77PPCOM
The command line used to compile a Fortran 77 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF77PPCOM if you need to use a specific
C-preprocessor command line for Fortran 77 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOMSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF77PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF90
The Fortran 90 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF90 if
you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM
The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to
set $SHF90COM if you need to use a specific command line for Fortran 90 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

252

SHF90COMSTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file. If not set, then
$SHF90COM or $SHFORTRANCOM (the command line) is displayed.

SHF90FLAGS
Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set
$SHF90FLAGS if you need to define specific user options for Fortran 90 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF90PPCOM
The command line used to compile a Fortran 90 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF90FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF90PPCOM if you need to use a specific
C-preprocessor command line for Fortran 90 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF90PPCOMSTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF90PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF95
The Fortran 95 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF95 if
you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM
The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to
set $SHF95COM if you need to use a specific command line for Fortran 95 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF95COMSTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file. If not set, then
$SHF95COM or $SHFORTRANCOM (the command line) is displayed.

SHF95FLAGS
Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set
$SHF95FLAGS if you need to define specific user options for Fortran 95 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF95PPCOM
The command line used to compile a Fortran 95 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF95FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF95PPCOM if you need to use a specific
C-preprocessor command line for Fortran 95 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF95PPCOMSTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF95PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHFORTRAN
The default Fortran compiler used for generating shared-library objects.

253

SHFORTRANCOM
The command line used to compile a Fortran source file to a shared-library object file. By default, any options
specified in the $SHFORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction
variables are included on this command line. See also $FORTRANCOM.

SHFORTRANCOMSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file. If not set, then
$SHFORTRANCOM (the command line) is displayed.

SHFORTRANFLAGS
Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM
The command line used to compile a Fortran source file to a shared-library object file after first running the
file through the C preprocessor. By default, any options specified in the $SHFORTRANFLAGS, $CPPFLAGS,
$_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included
on this command line. See also $SHFORTRANCOM.

SHFORTRANPPCOMSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLIBEMITTER
Contains the emitter specification for the SharedLibrary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

SHLIBNOVERSIONSYMLINKS
Instructs the SharedLibrary builder to not create symlinks for versioned shared libraries.

SHLIBPREFIX
The prefix used for shared library file names.

_SHLIBSONAME
A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and
$SHLIBSUFFIX. Used by SharedLibrary builder when the linker tool supports SONAME (e.g. gnulink).

SHLIBSUFFIX
The suffix used for shared library file names.

SHLIBVERSION
When this construction variable is defined, a versioned shared library is created by the SharedLibrary
builder. This activates the $_SHLIBVERSIONFLAGS and thus modifies the $SHLINKCOM as required, adds the
version number to the library name, and creates the symlinks that are needed. $SHLIBVERSION versions should
exist as alpha-numeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example
$SHLIBVERSION values include '1', '1.2.3', and '1.2.gitaa412c8b'.

_SHLIBVERSIONFLAGS
This macro automatically introduces extra flags to $SHLINKCOM when building versioned SharedLibrary
(that is when $SHLIBVERSION is set). _SHLIBVERSIONFLAGS usually adds $SHLIBVERSIONFLAGS
and some extra dynamically generated options (such as -Wl,-soname=$_SHLIBSONAME. It is unused by
"plain" (unversioned) shared libraries.

SHLIBVERSIONFLAGS
Extra flags added to $SHLINKCOM when building versioned SharedLibrary. These flags are only used when
$SHLIBVERSION is set.

254

SHLINK
The linker for programs that use shared libraries. See also $LINK for linking static objects.

On POSIX systems (those using the link tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects a compiler driver matching the type of source files in use. So for example, if you
set $SHCXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

SHLINKCOM
The command line used to link programs using shared libraries. See also $LINKCOM for linking static objects.

SHLINKCOMSTR
The string displayed when programs using shared libraries are linked. If this is not set, then $SHLINKCOM (the
command line) is displayed. See also $LINKCOMSTR for linking static objects.

env = Environment(SHLINKCOMSTR = "Linking shared $TARGET")

SHLINKFLAGS
General user options passed to the linker for programs using shared libraries. Note that this variable should not
contain -l (or similar) options for linking with the libraries listed in $LIBS, nor -L (or similar) include search
path options that scons generates automatically from $LIBPATH. See $_LIBFLAGS above, for the variable that
expands to library-link options, and $_LIBDIRFLAGS above, for the variable that expands to library search path
options. See also $LINKFLAGS for linking static objects.

SHOBJPREFIX
The prefix used for shared object file names.

SHOBJSUFFIX
The suffix used for shared object file names.

SONAME
Variable used to hard-code SONAME for versioned shared library/loadable module.

env.SharedLibrary('test', 'test.c', SHLIBVERSION='0.1.2', SONAME='libtest.so.2')

The variable is used, for example, by gnulink linker tool.

SOURCE
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOURCE_URL
The URL (web address) of the location from which the project was retrieved. This is used to fill in the Source:
field in the controlling information for Ipkg and RPM packages.

See the Package builder.

SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOVERSION
This will construct the SONAME using on the base library name (test in the example below) and use specified
SOVERSION to create SONAME.

255

env.SharedLibrary('test', 'test.c', SHLIBVERSION='0.1.2', SOVERSION='2')

The variable is used, for example, by gnulink linker tool.

In the example above SONAME would be libtest.so.2 which would be a symlink and point to
libtest.so.0.1.2

SPAWN
A command interpreter function that will be called to execute command line strings. The function must accept
five arguments:

def spawn(shell, escape, cmd, args, env):

shell is a string naming the shell program to use, escape is a function that can be called to escape shell special
characters in the command line, cmd is the path to the command to be executed, args holds the arguments to
the command and env is a dictionary of environment variables defining the execution environment in which the
command should be executed.

STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME
When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does not
check for linking static objects into a shared library.

SUBST_DICT
The dictionary used by the Substfile or Textfile builders for substitution values. It can be anything
acceptable to the dict() constructor, so in addition to a dictionary, lists of tuples are also acceptable.

SUBSTFILEPREFIX
The prefix used for Substfile file names, an empty string by default.

SUBSTFILESUFFIX
The suffix used for Substfile file names, an empty string by default.

SUMMARY
A short summary of what the project is about. This is used to fill in the Summary: field in the controlling
information for Ipkg and RPM packages, and as the Description: field in MSI packages.

See the Package builder.

SWIG
The name of the SWIG compiler to use.

SWIGCFILESUFFIX
The suffix that will be used for intermediate C source files generated by SWIG. The default value is '_wrap
$CFILESUFFIX' - that is, the concatenation of the string _wrap and the current C suffix $CFILESUFFIX.
By default, this value is used whenever the -c++ option is not specified as part of the $SWIGFLAGS construction
variable.

SWIGCOM
The command line used to call SWIG.

SWIGCOMSTR
The string displayed when calling SWIG. If this is not set, then $SWIGCOM (the command line) is displayed.

SWIGCXXFILESUFFIX
The suffix that will be used for intermediate C++ source files generated by SWIG. The default value is
'_wrap$CXXFILESUFFIX' - that is, the concatenation of the string _wrap and the current C++ suffix

256

$CXXFILESUFFIX. By default, this value is used whenever the -c++ option is specified as part of the
$SWIGFLAGS construction variable.

SWIGDIRECTORSUFFIX
The suffix that will be used for intermediate C++ header files generated by SWIG. These are only generated for
C++ code when the SWIG 'directors' feature is turned on. The default value is _wrap.h.

SWIGFLAGS
General options passed to SWIG. This is where you should set the target language (-python, -perl5, -tcl,
etc.) and whatever other options you want to specify to SWIG, such as the -c++ to generate C++ code instead
of C Code.

_SWIGINCFLAGS
An automatically-generated construction variable containing the SWIG command-line options for specifying
directories to be searched for included files. The value of $_SWIGINCFLAGS is created by respectively
prepending and appending $SWIGINCPREFIX and $SWIGINCSUFFIX to the beginning and end of each
directory in $SWIGPATH.

SWIGINCPREFIX
The prefix used to specify an include directory on the SWIG command line. This will be prepended to the
beginning of each directory in the $SWIGPATH construction variable when the $_SWIGINCFLAGS variable is
automatically generated.

SWIGINCSUFFIX
The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of
each directory in the $SWIGPATH construction variable when the $_SWIGINCFLAGS variable is automatically
generated.

SWIGOUTDIR
Specifies the output directory in which SWIG should place generated language-specific files. This will be used
by SCons to identify the files that will be generated by the SWIG call, and translated into the swig -outdir
option on the command line.

SWIGPATH
The list of directories that SWIG will search for included files. SCons' SWIG implicit dependency scanner will
search these directories for include files. The default value is an empty list.

Don't explicitly put include directory arguments in $SWIGFLAGS the result will be non-portable and the
directories will not be searched by the dependency scanner. Note: directory names in $SWIGPATH will be looked-
up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use a top-relative path (#):

env = Environment(SWIGPATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(SWIGPATH=include)

The directory list will be added to command lines through the automatically-generated $_SWIGINCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$SWIGINCPREFIX and $SWIGINCSUFFIX construction variables to the beginning and end of each directory
in $SWIGPATH. Any command lines you define that need the SWIGPATH directory list should include
$_SWIGINCFLAGS:

257

env = Environment(SWIGCOM="my_swig -o $TARGET $_SWIGINCFLAGS $SOURCES")

SWIGVERSION
The detected version string of the SWIG tool.

TAR
The tar archiver.

TARCOM
The command line used to call the tar archiver.

TARCOMSTR
The string displayed when archiving files using the tar archiver. If this is not set, then $TARCOM (the command
line) is displayed.

env = Environment(TARCOMSTR = "Archiving $TARGET")

TARFLAGS
General options passed to the tar archiver.

TARGET
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARGET_ARCH
The name of the hardware architecture that objects created using this construction environment should target. Can
be set when creating a construction environment by passing as a keyword argument in the Environment call.

On the win32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. If a value is not specified, will be set to the same value as $HOST_ARCH.
Changing the value after the environment is initialized will not cause the tool to be reinitialized. Compiled objects
will be in the target architecture if the compilation system supports generating for that target. The latest compiler
which can fulfill the requirement will be selected, unless a different version is directed by the value of the
$MSVC_VERSION construction variable.

On the win32/msvc combination, valid target arch values are x86, arm, i386 for 32-bit targets and amd64,
arm64, x86_64 and ia64 (Itanium) for 64-bit targets. For example, if you want to compile 64-bit binaries,
you would set TARGET_ARCH='x86_64' when creating the construction environment. Note that not all target
architectures are supported for all Visual Studio / MSVC versions. Check the relevant Microsoft documentation.

$TARGET_ARCH is not currently used by other compilation tools, but the option is reserved to do so in future

TARGET_OS
The name of the operating system that objects created using this construction environment should target. Can be
set when creating a construction environment by passing as a keyword argument in the Environment call;.

$TARGET_OS is not currently used by SCons but the option is reserved to do so in future

TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARSUFFIX
The suffix used for tar file names.

258

TEMPFILE
A callable object used to handle overly long command line strings, since operations which call out to a shell
will fail if the line is longer than the shell can accept. This tends to particularly impact linking. The tempfile
object stores the command line in a temporary file in the appropriate format, and returns an alternate command
line so the invoked tool will make use of the contents of the temporary file. If you need to replace the default
tempfile object, the callable should take into account the settings of $MAXLINELENGTH, $TEMPFILEPREFIX,
$TEMPFILESUFFIX, $TEMPFILEARGJOIN, $TEMPFILEDIR and $TEMPFILEARGESCFUNC.

TEMPFILEARGESCFUNC
The default argument escape function is SCons.Subst.quote_spaces. If you need to apply extra operations
on a command argument (to fix Windows slashes, normalize paths, etc.) before writing to the temporary file,
you can set the $TEMPFILEARGESCFUNC variable to a custom function. Such a function takes a single string
argument and returns a new string with any modifications applied. Example:

import sys
import re
from SCons.Subst import quote_spaces

WINPATHSEP_RE = re.compile(r"\\([^\"'\\]|$)")

def tempfile_arg_esc_func(arg):
 arg = quote_spaces(arg)
 if sys.platform != "win32":
 return arg
 # GCC requires double Windows slashes, let's use UNIX separator
 return WINPATHSEP_RE.sub(r"/\1", arg)

env["TEMPFILEARGESCFUNC"] = tempfile_arg_esc_func

TEMPFILEARGJOIN
The string to use to join the arguments passed to $TEMPFILE when the command line exceeds the limit set by
$MAXLINELENGTH. The default value is a space. However for MSVC, MSLINK the default is a line separator
as defined by os.linesep. Note this value is used literally and not expanded by the subst logic.

TEMPFILEDIR
The directory to create the long-lines temporary file in.

TEMPFILEPREFIX
The prefix for the name of the temporary file used to store command lines exceeding $MAXLINELENGTH. The
default prefix is '@', which works for the Microsoft Visual C++ and GNU toolchains on Windows. Set this
appropriately for other toolchains, for example '-@' for the diab compiler or '-via' for ARM toolchain.

TEMPFILESUFFIX
The suffix for the name of the temporary file used to store command lines exceeding $MAXLINELENGTH. The
suffix should include the dot ('.') if one is wanted as it will not be added automatically. The default is .lnk.

TEX
The TeX formatter and typesetter.

TEXCOM
The command line used to call the TeX formatter and typesetter.

TEXCOMSTR
The string displayed when calling the TeX formatter and typesetter. If this is not set, then $TEXCOM (the command
line) is displayed.

259

env = Environment(TEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

TEXFLAGS
General options passed to the TeX formatter and typesetter.

TEXINPUTS
List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency
scanner will search these directories for \include and \import files.

TEXTFILEPREFIX
The prefix used for Textfile file names, an empty string by default.

TEXTFILESUFFIX
The suffix used for Textfile file names; .txt by default.

TOOLS
A list of the names of the Tool specification modules that were actually initialized in the current construction
environment. This may be useful as a diagnostic aid to see if a tool did (or did not) run. The value is informative
and is not guaranteed to be complete.

UNCHANGED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

UNCHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

VENDOR
The person or organization who supply the packaged software. This is used to fill in the Vendor: field in the
controlling information for RPM packages, and the Manufacturer: field in the controlling information for
MSI packages.

See the Package builder.

VERSION
The version of the project, specified as a string.

See the Package builder.

VSWHERE
Specify the location of vswhere.exe.

The vswhere.exe executable is distributed with Microsoft Visual Studio and Build Tools since the 2017 edition,
but is also available as a standalone installation. It allows queries to obtain detailed information about installations
of 2017 and later editions. SCons makes use of this information to determine the state of compiler support for
those editions.

Setting the $VSWHERE variable to the path to a specific vswhere.exe binary causes SCons to use that binary. If
not set, SCons will search for one, looking in the following locations in order, using the first found ($VSWHERE
is updated with the location):

%ProgramFiles(x86)%\Microsoft Visual Studio\Installer
%ProgramFiles%\Microsoft Visual Studio\Installer
%ChocolateyInstall%\bin

260

%LOCALAPPDATA%\Microsoft\WinGet\Links
%USERPROFILE%\scoop\shims
%SCOOP%\shims

Note

In order to take effect, $VSWHERE must be set before the initial Microsoft Visual C++ compiler discovery
takes place. Discovery happens, at the latest, during the first call to the Environment function, unless
a tools list is specified which excludes the entire Microsoft Visual C++ toolchain - that is, omits
"defaults" and any specific tool module that refers to parts of the toolchain (msvc, mslink, masm,
midl and msvs). In this case, detection is deferred until any one of those tool modules is invoked
manually. The following two examples illustrate this:

VSWHERE set as Environment is created
env = Environment(VSWHERE='c:/my/path/to/vswhere')

Initialization deferred with empty tools, triggered manually
env = Environment(tools=[])
env['VSWHERE'] = r'c:/my/vswhere/install/location/vswhere.exe'
env.Tool('msvc')
env.Tool('mslink')
env.Tool('msvs')

WINDOWS_EMBED_MANIFEST
Set to True to embed the compiler-generated manifest (normally ${TARGET}.manifest) into all Windows
executables and DLLs built with this environment, as a resource during their link step. This is done using $MT
and $MTEXECOM and $MTSHLIBCOM. See also $WINDOWS_INSERT_MANIFEST.

WINDOWS_INSERT_DEF
If set to true, a library build of a Windows shared library (.dll file) will include a reference to the corresponding
module-definition file at the same time, if a module-definition file is not already listed as a build target. The name
of the module-definition file will be constructed from the base name of the library and the construction variables
$WINDOWSDEFSUFFIX and $WINDOWSDEFPREFIX. The default is to not add a module-definition file. The
module-definition file is not created by this directive, and must be supplied by the developer.

WINDOWS_INSERT_MANIFEST
If set to true, scons will add the manifest file generated by Microsoft Visual C++ 8.0 and later to the target
list so SCons will be aware they were generated. In the case of an executable, the manifest file name is
constructed using $WINDOWSPROGMANIFESTSUFFIX and $WINDOWSPROGMANIFESTPREFIX. In the case
of a shared library, the manifest file name is constructed using $WINDOWSSHLIBMANIFESTSUFFIX and
$WINDOWSSHLIBMANIFESTPREFIX. See also $WINDOWS_EMBED_MANIFEST.

WINDOWSDEFPREFIX
The prefix used for a Windows linker module-definition file name. Defaults to empty.

WINDOWSDEFSUFFIX
The suffix used for a Windows linker module-definition file name. Defaults to .def.

WINDOWSEXPPREFIX
The prefix used for Windows linker exports file names. Defaults to empty.

WINDOWSEXPSUFFIX
The suffix used for Windows linker exports file names. Defaults to .exp.

261

WINDOWSPROGMANIFESTPREFIX
The prefix used for executable program manifest files generated by Microsoft Visual C++. Defaults to empty.

WINDOWSPROGMANIFESTSUFFIX
The suffix used for executable program manifest files generated by Microsoft Visual C++. Defaults to
.manifest.

WINDOWSSHLIBMANIFESTPREFIX
The prefix used for shared library manifest files generated by Microsoft Visual C++. Defaults to empty.

WINDOWSSHLIBMANIFESTSUFFIX
The suffix used for shared library manifest files generated by Microsoft Visual C++. Defaults to .manifest.

X_IPK_DEPENDS
This is used to fill in the Depends: field in the controlling information for Ipkg packages.

See the Package builder.

X_IPK_DESCRIPTION
This is used to fill in the Description: field in the controlling information for Ipkg packages. The default
value is “$SUMMARY\n$DESCRIPTION”

X_IPK_MAINTAINER
This is used to fill in the Maintainer: field in the controlling information for Ipkg packages.

X_IPK_PRIORITY
This is used to fill in the Priority: field in the controlling information for Ipkg packages.

X_IPK_SECTION
This is used to fill in the Section: field in the controlling information for Ipkg packages.

X_MSI_LANGUAGE
This is used to fill in the Language: attribute in the controlling information for MSI packages.

See the Package builder.

X_MSI_LICENSE_TEXT
The text of the software license in RTF format. Carriage return characters will be replaced with the RTF equivalent
\\par.

See the Package builder.

X_MSI_UPGRADE_CODE
TODO

X_RPM_AUTOREQPROV
This is used to fill in the AutoReqProv: field in the RPM .spec file.

See the Package builder.

X_RPM_BUILD
internal, but overridable

X_RPM_BUILDREQUIRES
This is used to fill in the BuildRequires: field in the RPM .spec file. Note this should only be used on a
host managed by rpm as the dependencies will not be resolvable at build time otherwise.

262

X_RPM_BUILDROOT
internal, but overridable

X_RPM_CLEAN
internal, but overridable

X_RPM_CONFLICTS
This is used to fill in the Conflicts: field in the RPM .spec file.

X_RPM_DEFATTR
This value is used as the default attributes for the files in the RPM package. The default value is “(-,root,root)”.

X_RPM_DISTRIBUTION
This is used to fill in the Distribution: field in the RPM .spec file.

X_RPM_EPOCH
This is used to fill in the Epoch: field in the RPM .spec file.

X_RPM_EXCLUDEARCH
This is used to fill in the ExcludeArch: field in the RPM .spec file.

X_RPM_EXLUSIVEARCH
This is used to fill in the ExclusiveArch: field in the RPM .spec file.

X_RPM_EXTRADEFS
A list used to supply extra defintions or flags to be added to the RPM .spec file. Each item is added as-is
with a carriage return appended. This is useful if some specific RPM feature not otherwise anticipated by SCons
needs to be turned on or off. Note if this variable is omitted, SCons will by default supply the value '%global
debug_package %{nil}' to disable debug package generation. To enable debug package generation, include
this variable set either to None, or to a custom list that does not include the default line.

New in version 3.1.

env.Package(
 NAME="foo",
 ...
 X_RPM_EXTRADEFS=[
 "%define _unpackaged_files_terminate_build 0"
 "%define _missing_doc_files_terminate_build 0"
],
 ...
)

X_RPM_GROUP
This is used to fill in the Group: field in the RPM .spec file.

X_RPM_GROUP_lang
This is used to fill in the Group(lang): field in the RPM .spec file. Note that lang is not literal and should
be replaced by the appropriate language code.

X_RPM_ICON
This is used to fill in the Icon: field in the RPM .spec file.

X_RPM_INSTALL
internal, but overridable

263

X_RPM_PACKAGER
This is used to fill in the Packager: field in the RPM .spec file.

X_RPM_POSTINSTALL
This is used to fill in the %post: section in the RPM .spec file.

X_RPM_POSTUNINSTALL
This is used to fill in the %postun: section in the RPM .spec file.

X_RPM_PREFIX
This is used to fill in the Prefix: field in the RPM .spec file.

X_RPM_PREINSTALL
This is used to fill in the %pre: section in the RPM .spec file.

X_RPM_PREP
internal, but overridable

X_RPM_PREUNINSTALL
This is used to fill in the %preun: section in the RPM .spec file.

X_RPM_PROVIDES
This is used to fill in the Provides: field in the RPM .spec file.

X_RPM_REQUIRES
This is used to fill in the Requires: field in the RPM .spec file.

X_RPM_SERIAL
This is used to fill in the Serial: field in the RPM .spec file.

X_RPM_URL
This is used to fill in the Url: field in the RPM .spec file.

XGETTEXT
Path to xgettext(1) program (found via Detect()). See xgettext tool and POTUpdate builder.

XGETTEXTCOM
Complete xgettext command line. See xgettext tool and POTUpdate builder.

XGETTEXTCOMSTR
A string that is shown when xgettext(1) command is invoked (default: '', which means "print
$XGETTEXTCOM"). See xgettext tool and POTUpdate builder.

_XGETTEXTDOMAIN
Internal "macro". Generates xgettext domain name form source and target (default:
'${TARGET.filebase}').

XGETTEXTFLAGS
Additional flags to xgettext(1). See xgettext tool and POTUpdate builder.

XGETTEXTFROM
Name of file containing list of xgettext(1)'s source files. Autotools' users know this as POTFILES.in so they
will in most cases set XGETTEXTFROM="POTFILES.in" here. The $XGETTEXTFROM files have same syntax
and semantics as the well known GNU POTFILES.in. See xgettext tool and POTUpdate builder.

_XGETTEXTFROMFLAGS
Internal "macro". Genrates list of -D<dir> flags from the $XGETTEXTPATH list.

264

XGETTEXTFROMPREFIX
This flag is used to add single $XGETTEXTFROM file to xgettext(1)'s commandline (default: '-f').

XGETTEXTFROMSUFFIX
(default: '')

XGETTEXTPATH
List of directories, there xgettext(1) will look for source files (default: []).

Note

This variable works only together with $XGETTEXTFROM
See also xgettext tool and POTUpdate builder.

_XGETTEXTPATHFLAGS
Internal "macro". Generates list of -f<file> flags from $XGETTEXTFROM.

XGETTEXTPATHPREFIX
This flag is used to add single search path to xgettext(1)'s commandline (default: '-D').

XGETTEXTPATHSUFFIX
(default: '')

YACC
The parser generator.

YACC_GRAPH_FILE
If supplied, write a graph of the automaton to a file with the name taken from this variable. Will be emitted as a
--graph= command-line option. Use this in preference to including --graph= in $YACCFLAGS directly.

New in version 4.4.0.

YACC_GRAPH_FILE_SUFFIX
Previously specified by $YACCVCGFILESUFFIX.

The suffix of the file containing a graph of the grammar automaton when the -g option (or --graph= without
an option-argument) is used in $YACCFLAGS. Note that setting this variable informs SCons how to construct the
graph filename for tracking purposes, it does not affect the actual generated filename. Various yacc tools have
emitted various formats at different times. Set this to match what your parser generator produces.

New in version 4.6.0.

YACC_HEADER_FILE
If supplied, generate a header file with the name taken from this variable. Will be emitted as a --header=
command-line option. Use this in preference to including --header= in $YACCFLAGS directly.

New in version 4.4.0.

YACCCOM
The command line used to call the parser generator to generate a source file.

YACCCOMSTR
The string displayed when generating a source file using the parser generator. If this is not set, then $YACCCOM
(the command line) is displayed.

265

env = Environment(YACCCOMSTR="Yacc'ing $TARGET from $SOURCES")

YACCFLAGS
General options passed to the parser generator. In addition to passing the value on during invocation, the yacc
tool also examines this construction variable for options which cause additional output files to be generated, and
adds those to the target list.

If the -d option is present in $YACCFLAGS scons assumes that the call will also create a header file with the suffix
defined by $YACCHFILESUFFIX if the yacc source file ends in a .y suffix, or a file with the suffix defined
by $YACCHXXFILESUFFIX if the yacc source file ends in a .yy suffix. The header will have the same base
name as the requested target. This is only correct if the executable is bison (or win_bison). If using Berkeley yacc
(byacc), y.tab.h is always written - avoid the -d in this case and use $YACC_HEADER_FILE instead.

If a -g option is present, scons assumes that the call will also create a graph file with the suffix defined by
$YACCVCGFILESUFFIX.

If a -v option is present, scons assumes that the call will also create an output debug file with the suffix .output.

Also recognized are GNU bison options --header (and its deprecated synonym --defines), which is similar
to -d but gives the option to explicitly name the output header file through an option argument; and --graph,
which is similar to -g but gives the option to explicitly name the output graph file through an option argument.
The file suffixes described for -d and -g above are not applied if these are used in the option=argument form.

Note that files specified by --header= and --graph= may not be properly handled by SCons in all
situations, and using those in $YACCFLAGS should be considered legacy support only. Consider using
$YACC_HEADER_FILE and $YACC_GRAPH_FILE instead if the files need to be explicitly named (new in
version 4.4.0).

YACCHFILESUFFIX
The suffix of the C header file generated by the parser generator when the -d option (or --header without an
option-argument) is used in $YACCFLAGS. Note that setting this variable informs SCons how to construct the
header filename for tracking purposes, it does not affect the actual generated filename. Set this to match what your
parser generator produces. The default value is .h.

YACCHXXFILESUFFIX
The suffix of the C++ header file generated by the parser generator when the -d option (or --header without
an option-argument) is used in $YACCFLAGS. Note that setting this variable informs SCons how to construct the
header filename for tracking purposes, it does not affect the actual generated filename. Set this to match what your
parser generator produces. The default value is .hpp.

YACCVCGFILESUFFIX
Obsoleted. Use $YACC_GRAPH_FILE_SUFFIX instead. The value is used only if
$YACC_GRAPH_FILE_SUFFIX is not set. The default value is .gv.

Changed in version 4.6.0: deprecated. The default value changed from .vcg (bison stopped generating .vcg
output with version 2.4, in 2006).

ZIP
The zip compression and file packaging utility.

ZIP_OVERRIDE_TIMESTAMP
An optional timestamp which overrides the last modification time of the file when stored inside the Zip archive.
This is a tuple of six values: Year (>= 1980) Month (one-based) Day of month (one-based) Hours (zero-based)
Minutes (zero-based) Seconds (zero-based)

ZIPCOM
The command line used to call the zip utility, or the internal Python function used to create a zip archive.

266

ZIPCOMPRESSION
The compression flag from the Python zipfile module used by the internal Python function to control
whether the zip archive is compressed or not. The default value is zipfile.ZIP_DEFLATED, which creates a
compressed zip archive. This value has no effect if the zipfile module is unavailable.

ZIPCOMSTR
The string displayed when archiving files using the zip utility. If this is not set, then $ZIPCOM (the command
line or internal Python function) is displayed.

env = Environment(ZIPCOMSTR = "Zipping $TARGET")

ZIPFLAGS
General options passed to the zip utility.

ZIPROOT
An optional zip root directory (default empty). The filenames stored in the zip file will be relative to this directory,
if given. Otherwise the filenames are relative to the current directory of the command. For instance:

env = Environment()
env.Zip('foo.zip', 'subdir1/subdir2/file1', ZIPROOT='subdir1')

will produce a zip file foo.zip containing a file with the name subdir2/file1 rather than subdir1/
subdir2/file1.

ZIPSUFFIX
The suffix used for zip file names.

267

Appendix B. Builders
This appendix contains descriptions of all of the Builders that are potentially available "out of the box" in this version
of SCons.

CFile()
env.CFile()

Builds a C source file given a lex (.l) or yacc (.y) input file. The suffix specified by the $CFILESUFFIX
construction variable (.c by default) is automatically added to the target if it is not already present. Example:

builds foo.c
env.CFile(target='foo.c', source='foo.l')

builds bar.c
env.CFile(target='bar', source='bar.y')

Command()
env.Command()

There is actually no Builder named Command, rather the term "Command Builder" refers to a function which,
on each call, creates and calls an anonymous Builder. This is useful for "one-off" builds where a full Builder is
not needed. Since the anonymous Builder is never hooked into the standard Builder framework, an Action must
always be specfied. See the Command function description for the calling syntax and details.

CompilationDatabase()
env.CompilationDatabase()

CompilationDatabase is a special builder which adds a target to create a JSON formatted
compilation database compatible with clang tooling (see the LLVM specification [https://clang.llvm.org/docs/
JSONCompilationDatabase.html]). This database is suitable for consumption by various tools and editors who
can use it to obtain build and dependency information which otherwise would be internal to SCons. The
builder does not require any source files to be specified, rather it arranges to emit information about all of the
C, C++ and assembler source/output pairs identified in the build that are not excluded by the optional filter
$COMPILATIONDB_PATH_FILTER. The target is subject to the usual SCons target selection rules.

If called with no arguments, the builder will default to a target name of compile_commands.json.

If called with a single positional argument, scons will "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. This is the usual way to call the builder if a non-default target name
is wanted.

If called with either the target= or source= keyword arguments, the value of the argument is taken as the
target name. If called with both, the target= value is used and source= is ignored. If called with multiple
sources, the source list will be ignored, since there is no way to deduce what the intent was; in this case the default
target name will be used.

Note

You must load the compilation_db tool prior to specifying any part of your build or some source/
output files will not show up in the compilation database.

Available since scons 4.0.

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

268

CXXFile()
env.CXXFile()

Builds a C++ source file given a lex (.ll) or yacc (.yy) input file. The suffix specified by the
$CXXFILESUFFIX construction variable (.cc by default) is automatically added to the target if it is not already
present. Example:

builds foo.cc
env.CXXFile(target='foo.cc', source='foo.ll')

builds bar.cc
env.CXXFile(target='bar', source='bar.yy')

DocbookEpub()
env.DocbookEpub()

A pseudo-Builder, providing a Docbook toolchain for EPUB output.

env = Environment(tools=['docbook'])
env.DocbookEpub('manual.epub', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookEpub('manual')

DocbookHtml()
env.DocbookHtml()

A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environment(tools=['docbook'])
env.DocbookHtml('manual.html', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookHtml('manual')

DocbookHtmlChunked()
env.DocbookHtmlChunked()

A pseudo-Builder providing a Docbook toolchain for chunked HTML output. It supports the base.dir
parameter. The chunkfast.xsl file (requires "EXSLT") is used as the default stylesheet. Basic syntax:

env = Environment(tools=['docbook'])
env.DocbookHtmlChunked('manual')

where manual.xml is the input file.

If you use the root.filename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via “scons -c”:

env = Environment(tools=['docbook'])
env.DocbookHtmlChunked('mymanual.html', 'manual', xsl='htmlchunk.xsl')

Some basic support for the base.dir parameter is provided. You can add the base_dir keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment(tools=['docbook'])

269

env.DocbookHtmlChunked('manual', xsl='htmlchunk.xsl', base_dir='output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHtmlhelp()
env.DocbookHtmlhelp()

A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('manual')

where manual.xml is the input file.

If you use the root.filename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via “scons -c”:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('mymanual.html', 'manual', xsl='htmlhelp.xsl')

Some basic support for the base.dir parameter is provided. You can add the base_dir keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('manual', xsl='htmlhelp.xsl', base_dir='output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookMan()
env.DocbookMan()

A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environment(tools=['docbook'])
env.DocbookMan('manual')

where manual.xml is the input file. Note, that you can specify a target name, but the actual output names are
automatically set from the refname entries in your XML source.

DocbookPdf()
env.DocbookPdf()

A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environment(tools=['docbook'])
env.DocbookPdf('manual.pdf', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookPdf('manual')

DocbookSlidesHtml()
env.DocbookSlidesHtml()

A pseudo-Builder, providing a Docbook toolchain for HTML slides output.

env = Environment(tools=['docbook'])
env.DocbookSlidesHtml('manual')

If you use the titlefoil.html parameter in your own stylesheets you have to give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via “scons -c”:

270

env = Environment(tools=['docbook'])
env.DocbookSlidesHtml('mymanual.html','manual', xsl='slideshtml.xsl')

Some basic support for the base.dir parameter is provided. You can add the base_dir keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment(tools=['docbook'])
env.DocbookSlidesHtml('manual', xsl='slideshtml.xsl', base_dir='output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSlidesPdf()
env.DocbookSlidesPdf()

A pseudo-Builder, providing a Docbook toolchain for PDF slides output.

env = Environment(tools=['docbook'])
env.DocbookSlidesPdf('manual.pdf', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookSlidesPdf('manual')

DocbookXInclude()
env.DocbookXInclude()

A pseudo-Builder, for resolving XIncludes in a separate processing step.

env = Environment(tools=['docbook'])
env.DocbookXInclude('manual_xincluded.xml', 'manual.xml')

DocbookXslt()
env.DocbookXslt()

A pseudo-Builder, applying a given XSL transformation to the input file.

env = Environment(tools=['docbook'])
env.DocbookXslt('manual_transformed.xml', 'manual.xml', xsl='transform.xslt')

Note, that this builder requires the xsl parameter to be set.

DVI()
env.DVI()

Builds a .dvi file from a .tex, .ltx or .latex input file. If the source file suffix is .tex, scons will examine
the contents of the file; if the string \documentclass or \documentstyle is found, the file is assumed
to be a LaTeX file and the target is built by invoking the $LATEXCOM command line; otherwise, the $TEXCOM
command line is used. If the file is a LaTeX file, the DVI builder method will also examine the contents of
the .aux file and invoke the $BIBTEX command line if the string bibdata is found, start $MAKEINDEX to
generate an index if a .ind file is found and will examine the contents .log file and re-run the $LATEXCOM
command if the log file says it is necessary.

The suffix .dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

builds from aaa.tex
env.DVI(target = 'aaa.dvi', source = 'aaa.tex')
builds bbb.dvi

271

env.DVI(target = 'bbb', source = 'bbb.ltx')
builds from ccc.latex
env.DVI(target = 'ccc.dvi', source = 'ccc.latex')

Gs()
env.Gs()

A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs, gsos2
and gswin32c are tried.

env = Environment(tools=['gs'])
env.Gs(
 'cover.jpg',
 'scons-scons.pdf',
 GSFLAGS='-dNOPAUSE -dBATCH -sDEVICE=jpeg -dFirstPage=1 -dLastPage=1 -q',
)

Install()
env.Install()

Installs one or more source files or directories in the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
as a string or as a node returned by a builder.

env.Install(target='/usr/local/bin', source=['foo', 'bar'])

Note that if target paths chosen for the Install builder (and the related InstallAs and
InstallVersionedLib builders) are outside the project tree, such as in the example above, they may not be
selected for "building" by default, since in the absence of other instructions scons builds targets that are underneath
the top directory (the directory that contains the SConstruct file, usually the current directory). Use command
line targets or the Default function in this case.

If the --install-sandbox command line option is given, the target directory will be prefixed by the directory
path specified. This is useful to test installs without installing to a "live" location in the system.

See also FindInstalledFiles. For more thoughts on installation, see the User Guide (particularly the section
on Command-Line Targets and the chapters on Installing Files and on Alias Targets).

InstallAs()
env.InstallAs()

Installs one or more source files or directories to specific names, allowing changing a file or directory name as
part of the installation. It is an error if the target and source arguments list different numbers of files or directories.

env.InstallAs(target='/usr/local/bin/foo',
 source='foo_debug')
env.InstallAs(target=['../lib/libfoo.a', '../lib/libbar.a'],
 source=['libFOO.a', 'libBAR.a'])

See the note under Install.

InstallVersionedLib()
env.InstallVersionedLib()

Installs a versioned shared library. The symlinks appropriate to the architecture will be generated based on
symlinks of the source library.

272

env.InstallVersionedLib(target='/usr/local/bin/foo',
 source='libxyz.1.5.2.so')

See the note under Install.

Jar()
env.Jar()

Builds a Java archive (.jar) file from the specified list of sources. Any directories in the source list will be
searched for .class files). Any .java files in the source list will be compiled to .class files by calling the
Java Builder.

If the $JARCHDIR value is set, the jar command will change to the specified directory using the -C option. If
$JARCHDIR is not set explicitly, SCons will use the top of any subdirectory tree in which Java .class were
built by the Java Builder.

If the contents any of the source files begin with the string Manifest-Version, the file is assumed to be a
manifest and is passed to the jar command with the m option set.

env.Jar(target = 'foo.jar', source = 'classes')

env.Jar(target = 'bar.jar',
 source = ['bar1.java', 'bar2.java'])

Java()
env.Java()

Builds one or more Java class files. The sources may be any combination of explicit .java files, or directory
trees which will be scanned for .java files.

SCons will parse each source .java file to find the classes (including inner classes) defined within that file, and
from that figure out the target .class files that will be created. The class files will be placed underneath the
specified target directory.

SCons will also search each Java file for the Java package name, which it assumes can be found on a line beginning
with the string package in the first column; the resulting .class files will be placed in a directory reflecting
the specified package name. For example, the file Foo.java defining a single public Foo class and containing
a package name of sub.dir will generate a corresponding sub/dir/Foo.class class file.

Examples:

env.Java(target='classes', source='src')
env.Java(target='classes', source=['src1', 'src2'])
env.Java(target='classes', source=['File1.java', 'File2.java'])

Java source files can use the native encoding for the underlying OS. Since SCons compiles in simple ASCII mode
by default, the compiler will generate warnings about unmappable characters, which may lead to errors as the file
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done
on a system with a different encoding.

env = Environment()

273

env['ENV']['LANG'] = 'en_GB.UTF-8'

JavaH()
env.JavaH()

Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain all of the definitions. The source
can be the names of .class files, the names of .java files to be compiled into .class files by calling the
Java builder method, or the objects returned from the Java builder method.

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any .class file names.

Examples:

builds java_native.h
classes = env.Java(target="classdir", source="src")
env.JavaH(target="java_native.h", source=classes)

builds include/package_foo.h and include/package_bar.h
env.JavaH(target="include", source=["package/foo.class", "package/bar.class"])

builds export/foo.h and export/bar.h
env.JavaH(
 target="export",
 source=["classes/foo.class", "classes/bar.class"],
 JAVACLASSDIR="classes",
)

Note

Java versions starting with 10.0 no longer use the javah command for generating JNI headers/
sources, and indeed have removed the command entirely (see Java Enhancement Proposal JEP
313 [https:openjdk.java.net/jeps/313]), making this tool harder to use for that purpose. SCons may
autodiscover a javah belonging to an older release if there are multiple Java versions on the system,
which will lead to incorrect results. To use with a newer Java, override the default values of $JAVAH (to
contain the path to the javac) and $JAVAHFLAGS (to contain at least a -h flag) and note that generating
headers with javac requires supplying source .java files only, not .class files.

Library()
env.Library()

A synonym for the StaticLibrary builder method.

LoadableModule()
env.LoadableModule()

On most systems, this is the same as SharedLibrary. On Mac OS X (Darwin) platforms, this creates a loadable
module bundle.

M4()
env.M4()

Builds an output file from an M4 input file. This uses a default $M4FLAGS value of -E, which considers all
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313

274

env.M4(target = 'foo.c', source = 'foo.c.m4')

Moc()
env.Moc()

Builds an output file from a moc input file. moc input files are either header files or C++ files. This builder is
only available after using the tool qt3. See the $QT3DIR variable for more information. Example:

env.Moc('foo.h') # generates moc_foo.cc
env.Moc('foo.cpp') # generates foo.moc

MOFiles()
env.MOFiles()

This builder belongs to msgfmt tool. The builder compiles PO files to MO files.

Example 1. Create pl.mo and en.mo by compiling pl.po and en.po:

 # ...
 env.MOFiles(['pl', 'en'])

Example 2. Compile files for languages defined in LINGUAS file:

 # ...
 env.MOFiles(LINGUAS_FILE = 1)

Example 3. Create pl.mo and en.mo by compiling pl.po and en.po plus files for languages defined in
LINGUAS file:

 # ...
 env.MOFiles(['pl', 'en'], LINGUAS_FILE = 1)

Example 4. Compile files for languages defined in LINGUAS file (another version):

 # ...
 env['LINGUAS_FILE'] = 1
 env.MOFiles()

MSVSProject()
env.MSVSProject()

Build a Microsoft Visual C++ project file and solution file.

Builds a Microsoft Visual C++ project file based on the version of Visual Studio (or to be more precise, of
MSBuild) that is configured: either the latest installed version, or the version specified by $MSVC_VERSION in
the current construction environment. For Visual Studio 6.0 a .dsp file is generated. For Visual Studio versions
2002-2008, a .vcproj file is generated. For Visual Studio 2010 and later a .vcxproj file is generated. Note
there are multiple versioning schemes involved in the Microsoft compilation environment - see the description of
$MSVC_VERSION for equivalences. Note SCons does not know how to construct project files for other languages
(e.g. .csproj for C#, .vbproj for Visual Basic or .pyproject for Python).

For the .vcxproj file, the underlying format is the MSBuild XML Schema, and the details conform
to: https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure [https://learn.microsoft.com/en-

https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure
https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure

275

us/cpp/build/reference/vcxproj-file-structure]. The generated solution file enables Visual Studio to understand the
project structure, and allows building it using MSBuild to call back to SCons. The project file encodes a toolset
version that has been selected by SCons as described above. Since recent Visual Studio versions support multiple
concurrent toolsets, use $MSVC_VERSION to select the desired one if it does not match the SCons default. The
project file also includes entries which describe how to call SCons to build the project from within Visual Studio
(or from an MSBuild command line). In some situations SCons may generate this incorrectly - notably when
using the scons-local distribution, which is not installed in a way that that matches the default invocation line.
If so, the $SCONS_HOME construction variable can be used to describe the right way to locate the SCons code
so that it can be imported.

By default, a matching solution file for the project is also generated. This behavior may be disabled by specifying
auto_build_solution=0 to the MSVSProject builder. The solution file can also be independently
generated by calling the MSVSSolution builder, such as in the case where a solution should describe multiple
projects. See the MSVSSolution description for further information.

The MSVSProject builder accepts several keyword arguments describing lists of filenames to be placed into
the project file. Currently, srcs, incs, localincs, resources, and misc are recognized. The names are
intended to be self-explanatory, but note that the filenames need to be specified as strings, not as SCons File Nodes
(for example if you generate files for inclusion by using the Glob function, the results should be converted to a
list of strings before passing them to MSVSProject). This is because Visual Studio and MSBuild know nothing
about SCons Node types. Each of the filename lists are individually optional, but at least one list must be specified
for the resulting project file to be non-empty.

In addition to the above lists of values, the following values may be specified as keyword arguments:

target
The name of the target .dsp or .vcproj file. The correct suffix for the version of Visual Studio must
be used, but the $MSVSPROJECTSUFFIX construction variable will be defined to the correct value (see
example below).

variant
The name of this particular variant. Except for Visual Studio 6 projects, this can also be a list of variant
names. These are typically things like "Debug" or "Release", but really can be anything you want. For Visual
Studio 7 projects, they may also specify a target platform separated from the variant name by a | (vertical
pipe) character: Debug|Xbox. The default target platform is Win32. Multiple calls to MSVSProject with
different variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

cmdargs
Additional command line arguments for the different variants. The number of cmdargs entries must match
the number of variant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants.

cppdefines
Preprocessor definitions for the different variants. The number of cppdefines entries must match the
number of variant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants. If you don't give this parameter, SCons will use the invoking environment's
$CPPDEFINES entry for all variants.

cppflags
Compiler flags for the different variants. If a /std:c++ flag is found then /Zc:__cplusplus is appended
to the flags if not already found, this ensures that Intellisense uses the /std:c++ switch. The number of
cppflags entries must match the number of variant entries, or be empty (not specified). If you give only
one, it will automatically be propagated to all variants. If you don't give this parameter, SCons will combine
the invoking environment's $CCFLAGS, $CXXFLAGS, $CPPFLAGS entries for all variants.

https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure

276

cpppaths
Compiler include paths for the different variants. The number of cpppaths entries must match the number
of variant entries, or be empty (not specified). If you give only one, it will automatically be propagated
to all variants. If you don't give this parameter, SCons will use the invoking environment's $CPPPATH entry
for all variants.

buildtarget
An optional string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to use in what build variant. The number of buildtarget entries must match the number
of variant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Output field in the resulting Microsoft Visual C++ project file. If this is not specified, the default is the
same as the specified buildtarget value.

Note

SCons and Microsoft Visual Studio understand projects in different ways, and the mapping is sometimes
imperfect:

Because SCons always executes its build commands from the directory in which the SConstruct file
is located, if you generate a project file in a different directory than the directory of the SConstruct
file, users will not be able to double-click on the file name in compilation error messages displayed in
the Visual Studio console output window. This can be remedied by adding the Microsoft Visual C++ /
FC compiler option to the $CCFLAGS variable so that the compiler will print the full path name of any
files that cause compilation errors.

If the project file is only used to teach the Visual Studio project browser about the file layout there should
be no issues, However, Visual Studio should not be used to make changes to the project structure, build
options, etc. as these will (a) not feed back to the SCons description of the project and (b) be lost if SCons
regenerates the project file. The SConscript files should remain the definitive description of the build.

If the project file is used to drive MSBuild (such as selecting "build" from the Visual Studio interface)
you lose the direct control of target selection and command-line options you would have if launching
the build directly from SCons, because these will be hardcoded in the project file to the values specified
in the MSVSProject call. You can regain some of this control by defining multiple variants, using
multiple MSVSProject calls to arrange different build targets, arguments, defines, flags and paths for
different variants.

If the build is divided into a solution with multiple MSBuild projects the mapping is further strained. In
this case, it is important not to set Visual Studio to do parallel builds, as it will then launch the separate
project builds in parallel, and SCons does not work well if called that way. Instead you can set up the
SCons build for parallel building - see the SetOption function for how to do this with num_jobs.

Example usage:

barsrcs = ['bar.cpp']
barincs = ['bar.h']
barlocalincs = ['StdAfx.h']
barresources = ['bar.rc', 'resource.h']
barmisc = ['bar_readme.txt']

dll = env.SharedLibrary(target='bar.dll', source=barsrcs)

277

buildtarget = [s for s in dll if str(s).endswith('dll')]
env.MSVSProject(
 target='Bar' + env['MSVSPROJECTSUFFIX'],
 srcs=barsrcs,
 incs=barincs,
 localincs=barlocalincs,
 resources=barresources,
 misc=barmisc,
 buildtarget=buildtarget,
 variant='Release',
)

DebugSettings
A dictionary of debug settings that get written to the .vcproj.user or the .vcxproj.user file,
depending on the version installed. As for cmdargs, you can specify a DebugSettings dictionary per
variant. If you give only one, it will be propagated to all variants.

Changed in version 2.4: Added the optional DebugSettings parameter.

Currently, only Visual Studio v9.0 and Visual Studio version v11 are implemented, for other versions no file is
generated. To generate the user file, you just need to add a DebugSettings dictionary to the environment with
the right parameters for your MSVS version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:

Assuming you store your defaults in a file
vars = Variables('variables.py')
msvcver = vars.args.get('vc', '9')

Check command args to force one Microsoft Visual Studio version
if msvcver == '9' or msvcver == '11':
 env = Environment(MSVC_VERSION=msvcver + '.0', MSVC_BATCH=False)
else:
 env = Environment()

AddOption(
 '--userfile',
 action='store_true',
 dest='userfile',
 default=False,
 help="Create Visual C++ project file",
)

#
1. Configure your Debug Setting dictionary with options you want in the list
of allowed options, for instance if you want to create a user file to launch
a specific application for testing your dll with Microsoft Visual Studio 2008 (v9):
#
V9DebugSettings = {
 'Command': 'c:\\myapp\\using\\thisdll.exe',
 'WorkingDirectory': 'c:\\myapp\\using\\',
 'CommandArguments': '-p password',

278

 # 'Attach':'false',
 # 'DebuggerType':'3',
 # 'Remote':'1',
 # 'RemoteMachine': None,
 # 'RemoteCommand': None,
 # 'HttpUrl': None,
 # 'PDBPath': None,
 # 'SQLDebugging': None,
 # 'Environment': '',
 # 'EnvironmentMerge':'true',
 # 'DebuggerFlavor': None,
 # 'MPIRunCommand': None,
 # 'MPIRunArguments': None,
 # 'MPIRunWorkingDirectory': None,
 # 'ApplicationCommand': None,
 # 'ApplicationArguments': None,
 # 'ShimCommand': None,
 # 'MPIAcceptMode': None,
 # 'MPIAcceptFilter': None,
}

#
2. Because there are a lot of different options depending on the Microsoft
Visual Studio version, if you use more than one version you have to
define a dictionary per version, for instance if you want to create a user
file to launch a specific application for testing your dll with Microsoft
Visual Studio 2012 (v11):
#
V10DebugSettings = {
 'LocalDebuggerCommand': 'c:\\myapp\\using\\thisdll.exe',
 'LocalDebuggerWorkingDirectory': 'c:\\myapp\\using\\',
 'LocalDebuggerCommandArguments': '-p password',
 # 'LocalDebuggerEnvironment': None,
 # 'DebuggerFlavor': 'WindowsLocalDebugger',
 # 'LocalDebuggerAttach': None,
 # 'LocalDebuggerDebuggerType': None,
 # 'LocalDebuggerMergeEnvironment': None,
 # 'LocalDebuggerSQLDebugging': None,
 # 'RemoteDebuggerCommand': None,
 # 'RemoteDebuggerCommandArguments': None,
 # 'RemoteDebuggerWorkingDirectory': None,
 # 'RemoteDebuggerServerName': None,
 # 'RemoteDebuggerConnection': None,
 # 'RemoteDebuggerDebuggerType': None,
 # 'RemoteDebuggerAttach': None,
 # 'RemoteDebuggerSQLDebugging': None,
 # 'DeploymentDirectory': None,
 # 'AdditionalFiles': None,
 # 'RemoteDebuggerDeployDebugCppRuntime': None,
 # 'WebBrowserDebuggerHttpUrl': None,
 # 'WebBrowserDebuggerDebuggerType': None,
 # 'WebServiceDebuggerHttpUrl': None,
 # 'WebServiceDebuggerDebuggerType': None,
 # 'WebServiceDebuggerSQLDebugging': None,

279

}

#
3. Select the dictionary you want depending on the version of visual Studio
Files you want to generate.
#
if not env.GetOption('userfile'):
 dbgSettings = None
elif env.get('MSVC_VERSION', None) == '9.0':
 dbgSettings = V9DebugSettings
elif env.get('MSVC_VERSION', None) == '11.0':
 dbgSettings = V10DebugSettings
else:
 dbgSettings = None

#
4. Add the dictionary to the DebugSettings keyword.
#
barsrcs = ['bar.cpp', 'dllmain.cpp', 'stdafx.cpp']
barincs = ['targetver.h']
barlocalincs = ['StdAfx.h']
barresources = ['bar.rc', 'resource.h']
barmisc = ['ReadMe.txt']

dll = env.SharedLibrary(target='bar.dll', source=barsrcs)

env.MSVSProject(
 target='Bar' + env['MSVSPROJECTSUFFIX'],
 srcs=barsrcs,
 incs=barincs,
 localincs=barlocalincs,
 resources=barresources,
 misc=barmisc,
 buildtarget=[dll[0]] * 2,
 variant=('Debug|Win32', 'Release|Win32'),
 cmdargs=f'vc={msvcver}',
 DebugSettings=(dbgSettings, {}),
)

MSVSSolution()
env.MSVSSolution()

Build a Microsoft Visual Studio Solution file.

Builds a Visual Studio solution file based on the version of Visual Studio that is configured: either the latest
installed version, or the version specified by $MSVC_VERSION in the construction environment. For Visual
Studio 6, a .dsw file is generated. For Visual Studio .NET 2002 and later, it will generate a .sln file. Note
there are multiple versioning schemes involved in the Microsoft compilation environment - see the description
of $MSVC_VERSION for equivalences.

The solution file is a container for one or more projects, and follows the format described at https://
learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file [https://learn.microsoft.com/
en-us/visualstudio/extensibility/internals/solution-dot-sln-file].

The following values must be specified:

https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file

280

target
The name of the target .dsw or .sln file. The correct suffix for the version of Visual Studio must be used,
but the value $MSVSSOLUTIONSUFFIX will be defined to the correct value (see example below).

variant
The name of this particular variant, or a list of variant names (the latter is only supported for MSVS 7
solutions). These are typically things like "Debug" or "Release", but really can be anything you want. For
MSVS 7 they may also specify target platform, like this "Debug|Xbox". Default platform is Win32.

projects
A list of project file names, or Project nodes returned by calls to the MSVSProject Builder, to be placed
into the solution file. Note that these filenames need to be specified as strings, NOT as SCons File Nodes.
This is because the solution file will be interpreted by MSBuild and by Visual Studio, which know nothing
about SCons Node types.

Example Usage:

env.MSVSSolution(
 target="Bar" + env["MSVSSOLUTIONSUFFIX"],
 projects=["bar" + env["MSVSPROJECTSUFFIX"]],
 variant="Release",
)

Ninja()
env.Ninja()

A special builder which adds a target to create a Ninja build file. The builder does not require any source files
to be specified.

Note

This is an experimental feature. To enable it you must use one of the following methods

On the command line
--experimental=ninja

Or in your SConstruct
SetOption('experimental', 'ninja')

This functionality is subject to change and/or removal without deprecation cycle.

To use this tool you need to install the Python ninja package, as the tool by default depends on being
able to do an import of the package This can be done via:

python -m pip install ninja

If called with no arguments, the builder will default to a target name of ninja.build.

If called with a single positional argument, scons will "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. This is the usual way to call the builder if a non-default target name
is wanted.

281

If called with either the target= or source= keyword arguments, the value of the argument is taken as the
target name. If called with both, the target= value is used and source= is ignored. If called with multiple
sources, the source list will be ignored, since there is no way to deduce what the intent was; in this case the default
target name will be used.

Available since scons 4.2.

Object()
env.Object()

A synonym for the StaticObject builder method.

Package()
env.Package()

Builds software distribution packages. A package is a container format which includes files to install along with
metadata. Packaging is optional, and must be enabled by specifying the packaging tool. For example:

env = Environment(tools=['default', 'packaging'])

SCons can build packages in a number of well known packaging formats. The target package type may be
selected with the the $PACKAGETYPE construction variable or the --package-type command line option.
The package type may be a list, in which case SCons will attempt to build packages for each type in the list.
Example:

env.Package(PACKAGETYPE=['src_zip', 'src_targz'], ...other args...)

The currently supported packagers are:

msi Microsoft Installer package

rpm RPM Package Manger package

ipkg Itsy Package Management package

tarbz2 bzip2-compressed tar file

targz gzip-compressed tar file

tarxz xz-compressed tar file

zip zip file

src_tarbz2 bzip2-compressed tar file suitable as source to another
packager

src_targz gzip-compressed tar file suitable as source to another
packager

src_tarxz xz-compressed tar file suitable as source to another
packager

src_zip zip file suitable as source to another packager

The file list to include in the package may be specified with the source keyword argument. If omitted,
the FindInstalledFiles function is called behind the scenes to select all files that have an Install,
InstallAs or InstallVersionedLib Builder attached. If the target keyword argument is omitted, the
target name(s) will be deduced from the package type(s).

The metadata comes partly from attributes of the files to be packaged, and partly from packaging tags. Tags can be
passed as keyword arguments to the Package builder call, and may also be attached to files (or more accurately,

282

Nodes representing files) with the Tag function. Some package-level tags are mandatory, and will lead to errors
if omitted. The mandatory tags vary depending on the package type.

While packaging, the builder uses a temporary location named by the value of the $PACKAGEROOT variable -
the package sources are copied there before packaging.

Packaging example:

env = Environment(tools=["default", "packaging"])
env.Install("/bin/", "my_program")
env.Package(
 NAME="foo",
 VERSION="1.2.3",
 PACKAGEVERSION=0,
 PACKAGETYPE="rpm",
 LICENSE="gpl",
 SUMMARY="balalalalal",
 DESCRIPTION="this should be really really long",
 X_RPM_GROUP="Application/fu",
 SOURCE_URL="https://foo.org/foo-1.2.3.tar.gz",
)

In this example, the target /bin/my_program created by the Install call would not be built by default since
it is not under the project top directory. However, since no source is specified to the Package builder, it is
selected for packaging by the default sources rule. Since packaging is done using $PACKAGEROOT, no write is
actually done to the system's /bin directory, and the target will be selected since after rebasing to underneath
$PACKAGEROOT it is now under the top directory of the project.

PCH()
env.PCH()

Builds a Microsoft Visual C++ precompiled header. Calling this builder returns a list of two target nodes: the PCH
as the first element, and the object file as the second element. Normally the object file is ignored. The PCH builder
is generally used in conjunction with the $PCH construction variable to force object files to use the precompiled
header:

env['PCH'] = env.PCH('StdAfx.cpp')[0]

Note

This builder is specific to the PCH implementation in Microsoft Visual C++. Other compiler chains also
implement precompiled header support, but PCH does not work with them at this time. As a result, the
builder is only generated into the construction environment when Microsoft Visual C++ is being used
as the compiler.

The builder only works correctly in a C++ project. The Microsoft implementation distinguishes between
precompiled headers from C and C++. Use of the builder will cause the PCH generation to happen with
a flag that tells cl.exe all of the files are C++ files; if that PCH file is then supplied when compiling a C
source file, cl.exe will fail the build with a compatibility violation.

If possible, arrange the project so that a C++ source file passed to the PCH builder is not also included
in the list of sources to be otherwise compiled in the project. SCons will correctly track that file in the
dependency tree as a result of the PCH call, and (for MSVC 11.0 and greater) automatically add the
corresponding object file to the link line. If the source list is automatically generated, for example using
the Glob function, it may be necessary to remove that file from the list.

283

PDF()
env.PDF()

Builds a .pdf file from a .dvi input file (or, by extension, a .tex, .ltx, or .latex input file). The suffix
specified by the $PDFSUFFIX construction variable (.pdf by default) is added automatically to the target if it
is not already present. Example:

builds from aaa.tex
env.PDF(target = 'aaa.pdf', source = 'aaa.tex')
builds bbb.pdf from bbb.dvi
env.PDF(target = 'bbb', source = 'bbb.dvi')

POInit()
env.POInit()

This builder belongs to msginit tool. The builder initializes missing PO file(s) if $POAUTOINIT is set. If
$POAUTOINIT is not set (default), POInit prints instruction for user (that is supposed to be a translator), telling
how the PO file should be initialized. In normal projects you should not use POInit and use POUpdate instead.
POUpdate chooses intelligently between msgmerge(1) and msginit(1). POInit always uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
a bunch of PO files) or for tests.

Target nodes defined through POInit are not built by default (they're Ignored from '.' node) but are added to
special Alias ('po-create' by default). The alias name may be changed through the $POCREATE_ALIAS
construction variable. All PO files defined through POInit may be easily initialized by scons po-create.

Example 1. Initialize en.po and pl.po from messages.pot:

 # ...
 env.POInit(['en', 'pl']) # messages.pot --> [en.po, pl.po]

Example 2. Initialize en.po and pl.po from foo.pot:

 # ...
 env.POInit(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.po]

Example 3. Initialize en.po and pl.po from foo.pot but using $POTDOMAIN construction variable:

 # ...
 env.POInit(['en', 'pl'], POTDOMAIN='foo') # foo.pot --> [en.po, pl.po]

Example 4. Initialize PO files for languages defined in LINGUAS file. The files will be initialized from template
messages.pot:

 # ...
 env.POInit(LINGUAS_FILE = 1) # needs 'LINGUAS' file

Example 5. Initialize en.po and pl.pl PO files plus files for languages defined in LINGUAS file. The files will
be initialized from template messages.pot:

 # ...
 env.POInit(['en', 'pl'], LINGUAS_FILE = 1)

284

Example 6. You may preconfigure your environment first, and then initialize PO files:

 # ...
 env['POAUTOINIT'] = 1
 env['LINGUAS_FILE'] = 1
 env['POTDOMAIN'] = 'foo'
 env.POInit()

which has same efect as:

 # ...
 env.POInit(POAUTOINIT = 1, LINGUAS_FILE = 1, POTDOMAIN = 'foo')

PostScript()
env.PostScript()

Builds a .ps file from a .dvi input file (or, by extension, a .tex, .ltx, or .latex input file). The suffix
specified by the $PSSUFFIX construction variable (.ps by default) is added automatically to the target if it is
not already present. Example:

builds from aaa.tex
env.PostScript(target = 'aaa.ps', source = 'aaa.tex')
builds bbb.ps from bbb.dvi
env.PostScript(target = 'bbb', source = 'bbb.dvi')

POTUpdate()
env.POTUpdate()

The builder belongs to xgettext tool. The builder updates target POT file if exists or creates one if it doesn't.
The node is not built by default (i.e. it is Ignored from '.'), but only on demand (i.e. when given POT file is
required or when special alias is invoked). This builder adds its targe node (messages.pot, say) to a special
alias (pot-update by default, see $POTUPDATE_ALIAS) so you can update/create them easily with scons
pot-update. The file is not written until there is no real change in internationalized messages (or in comments
that enter POT file).

Note

You may see xgettext(1) being invoked by the xgettext tool even if there is no real change in
internationalized messages (so the POT file is not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Example 1. Let's create po/ directory and place following SConstruct script there:

 # SConstruct in 'po/' subdir
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(['foo'], ['../a.cpp', '../b.cpp'])
 env.POTUpdate(['bar'], ['../c.cpp', '../d.cpp'])

Then invoke scons few times:

 user@host:$ scons # Does not create foo.pot nor bar.pot
 user@host:$ scons foo.pot # Updates or creates foo.pot

285

 user@host:$ scons pot-update # Updates or creates foo.pot and bar.pot
 user@host:$ scons -c # Does not clean foo.pot nor bar.pot.

the results shall be as the comments above say.

Example 2. The POTUpdate builder may be used with no target specified, in which case default target
messages.pot will be used. The default target may also be overridden by setting $POTDOMAIN construction
variable or providing it as an override to POTUpdate builder:

 # SConstruct script
 env = Environment(tools = ['default', 'xgettext'])
 env['POTDOMAIN'] = "foo"
 env.POTUpdate(source = ["a.cpp", "b.cpp"]) # Creates foo.pot ...
 env.POTUpdate(POTDOMAIN = "bar", source = ["c.cpp", "d.cpp"]) # and bar.pot

Example 3. The sources may be specified within separate file, for example POTFILES.in:

 # POTFILES.in in 'po/' subdirectory
 ../a.cpp
 ../b.cpp
 # end of file

The name of the file (POTFILES.in) containing the list of sources is provided via $XGETTEXTFROM:

 # SConstruct file in 'po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in')

Example 4. You may use $XGETTEXTPATH to define source search path. Assume, for example, that you have
files a.cpp, b.cpp, po/SConstruct, po/POTFILES.in. Then your POT-related files could look as below:

 # POTFILES.in in 'po/' subdirectory
 a.cpp
 b.cpp
 # end of file

 # SConstruct file in 'po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in', XGETTEXTPATH='../')

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH = ['dir1',
'dir2', ...]. The order in the list determines the search order of source files. The path to the first file found
is used.

Let's create 0/1/po/SConstruct script:

 # SConstruct file in '0/1/po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in', XGETTEXTPATH=['../', '../../'])

and 0/1/po/POTFILES.in:

286

 # POTFILES.in in '0/1/po/' subdirectory
 a.cpp
 # end of file

Write two *.cpp files, the first one is 0/a.cpp:

 /* 0/a.cpp */
 gettext("Hello from ../../a.cpp")

and the second is 0/1/a.cpp:

 /* 0/1/a.cpp */
 gettext("Hello from ../a.cpp")

then run scons. You'll obtain 0/1/po/messages.pot with the message "Hello from ../a.cpp". When
you reverse order in $XGETTEXTFOM, i.e. when you write SConscript as

 # SConstruct file in '0/1/po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in', XGETTEXTPATH=['../../', '../'])

then the messages.pot will contain msgid "Hello from ../../a.cpp" line and not msgid "Hello
from ../a.cpp".

POUpdate()
env.POUpdate()

The builder belongs to msgmerge tool. The builder updates PO files with msgmerge(1), or initializes missing
PO files as described in documentation of msginit tool and POInit builder (see also $POAUTOINIT). Note,
that POUpdate does not add its targets to po-create alias as POInit does.

Target nodes defined through POUpdate are not built by default (they're Ignored from '.' node). Instead,
they are added automatically to special Alias ('po-update' by default). The alias name may be changed
through the $POUPDATE_ALIAS construction variable. You can easily update PO files in your project by scons
po-update.

Example 1. Update en.po and pl.po from messages.pot template (see also $POTDOMAIN), assuming that
the later one exists or there is rule to build it (see POTUpdate):

 # ...
 env.POUpdate(['en','pl']) # messages.pot --> [en.po, pl.po]

Example 2. Update en.po and pl.po from foo.pot template:

 # ...
 env.POUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]

Example 3. Update en.po and pl.po from foo.pot (another version):

 # ...
 env.POUpdate(['en', 'pl'], POTDOMAIN='foo') # foo.pot -- > [en.po, pl.pl]

287

Example 4. Update files for languages defined in LINGUAS file. The files are updated from messages.pot
template:

 # ...
 env.POUpdate(LINGUAS_FILE = 1) # needs 'LINGUAS' file

Example 5. Same as above, but update from foo.pot template:

 # ...
 env.POUpdate(LINGUAS_FILE = 1, source = ['foo'])

Example 6. Update en.po and pl.po plus files for languages defined in LINGUAS file. The files are updated
from messages.pot template:

 # produce 'en.po', 'pl.po' + files defined in 'LINGUAS':
 env.POUpdate(['en', 'pl'], LINGUAS_FILE = 1)

Example 7. Use $POAUTOINIT to automatically initialize PO file if it doesn't exist:

 # ...
 env.POUpdate(LINGUAS_FILE = 1, POAUTOINIT = 1)

Example 8. Update PO files for languages defined in LINGUAS file. The files are updated from foo.pot
template. All necessary settings are pre-configured via environment.

 # ...
 env['POAUTOINIT'] = 1
 env['LINGUAS_FILE'] = 1
 env['POTDOMAIN'] = 'foo'
 env.POUpdate()

Program()
env.Program()

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or
Fortran source files are specified, then they will be automatically compiled to object files using the Object
builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix, specified by the $PROGPREFIX construction variable (nothing
by default), and suffix, specified by the $PROGSUFFIX construction variable (by default, .exe on Windows
systems, nothing on POSIX systems), are automatically added to the target if not already present. Example:

env.Program(target='foo', source=['foo.o', 'bar.c', 'baz.f'])

ProgramAllAtOnce()
env.ProgramAllAtOnce()

Builds an executable from D sources without first creating individual objects for each file.

D sources can be compiled file-by-file as C and C++ source are, and D is integrated into the scons Object and
Program builders for this model of build. D codes can though do whole source meta-programming (some of the
testing frameworks do this). For this it is imperative that all sources are compiled and linked in a single call to
the D compiler. This builder serves that purpose.

288

 env.ProgramAllAtOnce('executable', ['mod_a.d, mod_b.d', 'mod_c.d'])

This command will compile the modules mod_a, mod_b, and mod_c in a single compilation process without first
creating object files for the modules. Some of the D compilers will create executable.o others will not.

RES()
env.RES()

Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The .res (or .o for MinGW) suffix is added to the target name if no
other suffix is given. The source file is scanned for implicit dependencies as though it were a C file. Example:

env.RES('resource.rc')

RMIC()
env.RMIC()

Builds stub and skeleton class files for remote objects from Java .class files. The target is a directory relative
to which the stub and skeleton class files will be written. The source can be the names of .class files, or the
objects return from the Java builder method.

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the RMIC builder
method itself, then the value of the variable will be stripped from the beginning of any .class file names.

classes = env.Java(target='classdir', source='src')
env.RMIC(target='outdir1', source=classes)
env.RMIC(
 target='outdir2',
 source=['package/foo.class', 'package/bar.class'],
)
env.RMIC(
 target='outdir3',
 source=['classes/foo.class', 'classes/bar.class'],
 JAVACLASSDIR='classes',
)

RPCGenClient()
env.RPCGenClient()

Generates an RPC client stub (_clnt.c) file from a specified RPC (.x) source file. Because rpcgen only builds
output files in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_clnt.c
env.RPCGenClient('src/rpcif.x')

RPCGenHeader()
env.RPCGenHeader()

Generates an RPC header (.h) file from a specified RPC (.x) source file. Because rpcgen only builds output files
in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif.h
env.RPCGenHeader('src/rpcif.x')

289

RPCGenService()
env.RPCGenService()

Generates an RPC server-skeleton (_svc.c) file from a specified RPC (.x) source file. Because rpcgen only
builds output files in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_svc.c
env.RPCGenClient('src/rpcif.x')

RPCGenXDR()
env.RPCGenXDR()

Generates an RPC XDR routine (_xdr.c) file from a specified RPC (.x) source file. Because rpcgen only builds
output files in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_xdr.c
env.RPCGenClient('src/rpcif.x')

SharedLibrary()
env.SharedLibrary()

Builds a shared library given one or more object files and/or C, C++, D or Fortran source files. Any source files
listed in the source parameter will be automatically compiled to object files suitable for use in a shared library.
Any object files listed in the source parameter must have been built for a shared library (that is, using the
SharedObject builder method). scons will raise an error if there is any mismatch.

The target library file prefix, specified by the $SHLIBPREFIX construction variable (by default, lib on POSIX
systems, nothing on Windows systems), and suffix, specified by the $SHLIBSUFFIX construction variable (by
default, .dll on Windows systems, .so on POSIX systems), are automatically added (if not already present)
to the target name to make up the library filename. On a POSIX system, if the $SHLIBVERSION construction
variable is set, it is appended (following a period) to the resulting library name.

Example:

env.SharedLibrary(target='bar', source=['bar.c', 'foo.o'])

On Windows systems, the SharedLibrary builder method will always build an import library (.lib) in
addition to the shared library (.dll), adding a .lib library with the same basename if there is not already a
.lib file explicitly listed in the targets.

On Cygwin systems, the SharedLibrary builder method will always build an import library (.dll.a) in
addition to the shared library (.dll), adding a .dll.a library with the same basename if there is not already
a .dll.a file explicitly listed in the targets.

On some platforms, there is a distinction between a shared library (loaded automatically by the system to resolve
external references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
LoadableModule builder for the latter.

If $SHLIBVERSION is defined, a versioned shared library is created. This modifies $SHLINKFLAGS as
required, adds the version number to the library name, and creates any symbolic links that are needed.

env.SharedLibrary(target='bar', source=['bar.c', 'foo.o'], SHLIBVERSION='1.5.2')

On a POSIX system, supplying a simple version string (no dots) creates exactly one symbolic link:
SHLIBVERSION="1" would create (for example) library libbar.so.1 and symbolic link libbar.so.
Supplying a dotted version string will create two symbolic links (irrespective of the number of segments in

290

the version): SHLIBVERSION="1.5.2" for the same library would create library libbar.so.1.5.2 and
symbolic links libbar.so and libbar.so.1. A Darwin (OSX) system creates one symlink in either case,
for the second example the library would be libbar.1.5.2.dylib and the link would be libbar.dylib.

On Windows systems, specifying the register=1 keyword argument will cause the .dll to be registered after
it is built. The command that is run is determined by the $REGSVR construction variable (regsvr32 by default),
and the flags passed are determined by $REGSVRFLAGS. By default, $REGSVRFLAGS includes the /s option,
to prevent dialogs from popping up and requiring user attention when it is run. If you change $REGSVRFLAGS,
be sure to include the /s option. For example,

env.SharedLibrary(target='bar', source=['bar.cxx', 'foo.obj'], register=1)

will register bar.dll as a COM object when it is done linking it.

SharedObject()
env.SharedObject()

Builds an object file intended for inclusion in a shared library. Source files must have one of the same set of
extensions specified above for the StaticObject builder method. On some platforms building a shared object
requires additional compiler option (e.g. -fPIC for gcc) in addition to those needed to build a normal (static)
object, but on some platforms there is no difference between a shared object and a normal (static) one. When there
is a difference, SCons will only allow shared objects to be linked into a shared library, and will use a different
suffix for shared objects. On platforms where there is no difference, SCons will allow both normal (static) and
shared objects to be linked into a shared library, and will use the same suffix for shared and normal (static) objects.
The target object file prefix, specified by the $SHOBJPREFIX construction variable (by default, the same as
$OBJPREFIX), and suffix, specified by the $SHOBJSUFFIX construction variable, are automatically added to
the target if not already present. Examples:

env.SharedObject(target='ddd', source='ddd.c')
env.SharedObject(target='eee.o', source='eee.cpp')
env.SharedObject(target='fff.obj', source='fff.for')

Note that the source files will be scanned according to the suffix mappings in the SourceFileScanner object.
See the manpage section "Scanner Objects" for more information.

StaticLibrary()
env.StaticLibrary()

Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files
are given, then they will be automatically compiled to object files. The static library file prefix, specified by
the $LIBPREFIX construction variable (by default, lib on POSIX systems, nothing on Windows systems),
and suffix, specified by the $LIBSUFFIX construction variable (by default, .lib on Windows systems, .a on
POSIX systems), are automatically added to the target if not already present. Example:

env.StaticLibrary(target='bar', source=['bar.c', 'foo.o'])

Any object files listed in the source must have been built for a static library (that is, using the StaticObject
builder method). scons will raise an error if there is any mismatch.

StaticObject()
env.StaticObject()

Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of
the following extensions:

291

 .asm assembly language file
 .ASM assembly language file
 .c C file
 .C Windows: C file
 POSIX: C++ file
 .cc C++ file
 .cpp C++ file
 .cxx C++ file
 .cxx C++ file
 .c++ C++ file
 .C++ C++ file
 .d D file
 .f Fortran file
 .F Windows: Fortran file
 POSIX: Fortran file + C pre-processor
 .for Fortran file
 .FOR Fortran file
 .fpp Fortran file + C pre-processor
 .FPP Fortran file + C pre-processor
 .m Object C file
 .mm Object C++ file
 .s assembly language file
 .S Windows: assembly language file
 ARM: CodeSourcery Sourcery Lite
 .sx assembly language file + C pre-processor
 POSIX: assembly language file + C pre-processor
 .spp assembly language file + C pre-processor
 .SPP assembly language file + C pre-processor

The target object file prefix, specified by the $OBJPREFIX construction variable (nothing by default), and suffix,
specified by the $OBJSUFFIX construction variable (.obj on Windows systems, .o on POSIX systems), are
automatically added to the target if not already present. Examples:

env.StaticObject(target='aaa', source='aaa.c')
env.StaticObject(target='bbb.o', source='bbb.c++')
env.StaticObject(target='ccc.obj', source='ccc.f')

Note that the source files will be scanned according to the suffix mappings in the SourceFileScanner object.
See the manpage section "Scanner Objects" for more information.

Substfile()
env.Substfile()

The Substfile builder creates a single text file from a template consisting of a file or set of files (or nodes),
replacing text using the $SUBST_DICT construction variable (if set). If a set, they are concatenated into the target
file using the value of the $LINESEPARATOR construction variable as a separator between contents; the separator
is not emitted after the contents of the last file. Nested lists of source files are flattened. See also Textfile.

By default the target file encoding is "utf-8" and can be changed by $FILE_ENCODING Examples:

If a single source file name is specified and has a .in suffix, the suffix is stripped and the remainder of the name
is used as the default target name.

The prefix and suffix specified by the $SUBSTFILEPREFIX and $SUBSTFILESUFFIX construction variables
(an empty string by default in both cases) are automatically added to the target if they are not already present.

292

If a construction variable named $SUBST_DICT is present, it may be either a Python dictionary or a sequence of
(key, value) tuples. If it is a dictionary it is converted into a list of tuples with unspecified order, so if one key is
a prefix of another key or if one substitution could be further expanded by another subsitition, it is unpredictable
whether the expansion will occur.

Any occurrences of a key in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environment(tools=['default'])

env['prefix'] = '/usr/bin'
script_dict = {'@prefix@': '/bin', '@exec_prefix@': '$prefix'}
env.Substfile('script.in', SUBST_DICT=script_dict)

conf_dict = {'%VERSION%': '1.2.3', '%BASE%': 'MyProg'}
env.Substfile('config.h.in', conf_dict, SUBST_DICT=conf_dict)

UNPREDICTABLE - one key is a prefix of another
bad_foo = {'$foo': '$foo', '$foobar': '$foobar'}
env.Substfile('foo.in', SUBST_DICT=bad_foo)

PREDICTABLE - keys are applied longest first
good_foo = [('$foobar', '$foobar'), ('$foo', '$foo')]
env.Substfile('foo.in', SUBST_DICT=good_foo)

UNPREDICTABLE - one substitution could be futher expanded
bad_bar = {'@bar@': '@soap@', '@soap@': 'lye'}
env.Substfile('bar.in', SUBST_DICT=bad_bar)

PREDICTABLE - substitutions are expanded in order
good_bar = (('@bar@', '@soap@'), ('@soap@', 'lye'))
env.Substfile('bar.in', SUBST_DICT=good_bar)

the SUBST_DICT may be in common (and not an override)
substutions = {}
subst = Environment(tools=['textfile'], SUBST_DICT=substitutions)
substitutions['@foo@'] = 'foo'
subst['SUBST_DICT']['@bar@'] = 'bar'
subst.Substfile(
 'pgm1.c',
 [Value('#include "@foo@.h"'), Value('#include "@bar@.h"'), "common.in", "pgm1.in"],
)
subst.Substfile(
 'pgm2.c',
 [Value('#include "@foo@.h"'), Value('#include "@bar@.h"'), "common.in", "pgm2.in"],
)

Tar()
env.Tar()

Builds a tar archive of the specified files and/or directories. Unlike most builder methods, the Tar builder method
may be called multiple times for a given target; each additional call adds to the list of entries that will be built into

293

the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env.Tar('src.tar', 'src')

Create the stuff.tar file.
env.Tar('stuff', ['subdir1', 'subdir2'])
Also add "another" to the stuff.tar file.
env.Tar('stuff', 'another')

Set TARFLAGS to create a gzip-filtered archive.
env = Environment(TARFLAGS = '-c -z')
env.Tar('foo.tar.gz', 'foo')

Also set the suffix to .tgz.
env = Environment(TARFLAGS = '-c -z',
 TARSUFFIX = '.tgz')
env.Tar('foo')

Textfile()
env.Textfile()

The Textfile builder generates a single text file from a template consisting of a list of strings, replacing text
using the $SUBST_DICT construction variable (if set) - see Substfile for a description of replacement. The
strings will be separated in the target file using the value of the $LINESEPARATOR construction variable; the
line separator is not emitted after the last string. Nested lists of source strings are flattened. Source strings need
not literally be Python strings: they can be Nodes or Python objects that convert cleanly to Value nodes.

The prefix and suffix specified by the $TEXTFILEPREFIX and $TEXTFILESUFFIX construction variables
(by default an empty string and .txt, respectively) are automatically added to the target if they are not already
present.

By default the target file encoding is "utf-8" and can be changed by $FILE_ENCODING Examples:

builds/writes foo.txt
env.Textfile(target='foo.txt', source=['Goethe', 42, 'Schiller'])

builds/writes bar.txt
env.Textfile(target='bar', source=['lalala', 'tanteratei'], LINESEPARATOR='|*')

nested lists are flattened automatically
env.Textfile(target='blob', source=['lalala', ['Goethe', 42, 'Schiller'], 'tanteratei'])

files may be used as input by wraping them in File()
env.Textfile(
 target='concat', # concatenate files with a marker between
 source=[File('concat1'), File('concat2')],
 LINESEPARATOR='====================\n',
)

Results:

foo.txt

294

 Goethe
 42
 Schiller

bar.txt

 lalala|*tanteratei

blob.txt

 lalala
 Goethe
 42
 Schiller
 tanteratei

Translate()
env.Translate()

This pseudo-builder belongs to gettext toolset. The builder extracts internationalized messages from source
files, updates POT template (if necessary) and then updates PO translations (if necessary). If $POAUTOINIT
is set, missing PO files will be automatically created (i.e. without translator person intervention). The variables
$LINGUAS_FILE and $POTDOMAIN are taken into acount too. All other construction variables used by
POTUpdate, and POUpdate work here too.

Example 1. The simplest way is to specify input files and output languages inline in a SCons script when invoking
Translate

SConscript in 'po/' directory
env = Environment(tools = ["default", "gettext"])
env['POAUTOINIT'] = 1
env.Translate(['en','pl'], ['../a.cpp','../b.cpp'])

Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using POTFILES.in
and LINGUAS files

LINGUAS
en pl
#end

POTFILES.in
a.cpp
b.cpp
end

SConscript
env = Environment(tools = ["default", "gettext"])
env['POAUTOINIT'] = 1
env['XGETTEXTPATH'] = ['../']
env.Translate(LINGUAS_FILE = 1, XGETTEXTFROM = 'POTFILES.in')

295

The last approach is perhaps the recommended one. It allows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for translations (from sources to PO files) and
script(s) under variant directories are responsible for compilation of PO to MO files to and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LINGUAS file. Note, that the
updated POT and PO files are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionaly, the file listing of po/ directory contains
LINGUAS file, so the source tree looks familiar to translators, and they may work with the project in their usual
way.

Example 3. Let's prepare a development tree as below

 project/
 + SConstruct
 + build/
 + src/
 + po/
 + SConscript
 + SConscript.i18n
 + POTFILES.in
 + LINGUAS

with build being variant directory. Write the top-level SConstruct script as follows

 # SConstruct
 env = Environment(tools = ["default", "gettext"])
 VariantDir('build', 'src', duplicate = 0)
 env['POAUTOINIT'] = 1
 SConscript('src/po/SConscript.i18n', exports = 'env')
 SConscript('build/po/SConscript', exports = 'env')

the src/po/SConscript.i18n as

 # src/po/SConscript.i18n
 Import('env')
 env.Translate(LINGUAS_FILE=1, XGETTEXTFROM='POTFILES.in', XGETTEXTPATH=['../'])

and the src/po/SConscript

 # src/po/SConscript
 Import('env')
 env.MOFiles(LINGUAS_FILE = 1)

Such setup produces POT and PO files under source tree in src/po/ and binary MO files under variant tree in
build/po/. This way the POT and PO files are separated from other output files, which must not be committed
back to source repositories (e.g. MO files).

Note

In above example, the PO files are not updated, nor created automatically when you issue scons '.'
command. The files must be updated (created) by hand via scons po-update and then MO files can be
compiled by running scons '.'.

296

TypeLibrary()
env.TypeLibrary()

Builds a Windows type library (.tlb) file from an input IDL file (.idl). In addition, it will build the associated
interface stub and proxy source files, naming them according to the base name of the .idl file. For example,

env.TypeLibrary(source="foo.idl")

Will create foo.tlb, foo.h, foo_i.c, foo_p.c and foo_data.c files.

Uic()
env.Uic()

Builds a header file, an implementation file and a moc file from an ui file. and returns the corresponding nodes in
the that order. This builder is only available after using the tool qt3. Note: you can specify .ui files directly as
source files to the Program, Library and SharedLibrary builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are always prepended to names of
built files; if you don't want prefixes, you may set them to ``). See the $QT3DIR variable for more information.
Example:

env.Uic('foo.ui') # -> ['foo.h', 'uic_foo.cc', 'moc_foo.cc']
env.Uic(
 target=Split('include/foo.h gen/uicfoo.cc gen/mocfoo.cc'),
 source='foo.ui'
) # -> ['include/foo.h', 'gen/uicfoo.cc', 'gen/mocfoo.cc']

Zip()
env.Zip()

Builds a zip archive of the specified files and/or directories. Unlike most builder methods, the Zip builder method
may be called multiple times for a given target; each additional call adds to the list of entries that will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env.Zip('src.zip', 'src')

Create the stuff.zip file.
env.Zip('stuff', ['subdir1', 'subdir2'])
Also add "another" to the stuff.tar file.
env.Zip('stuff', 'another')

297

Appendix C. Tools
This appendix contains descriptions of all of the Tools modules that are available "out of the box" in this version of
SCons.

386asm
Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

aixc++
Sets construction variables for the IMB xlc / Visual Age C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHOBJSUFFIX.

aixcc
Sets construction variables for the IBM xlc / Visual Age C compiler.

Sets: $CC, $CCVERSION, $SHCC.

aixf77
Sets construction variables for the IBM Visual Age f77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink
Sets construction variables for the IBM Visual Age linker.

Sets: $LINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

applelink
Sets construction variables for the Apple linker (similar to the GNU linker).

Sets: $APPLELINK_COMPATIBILITY_VERSION, $APPLELINK_CURRENT_VERSION,
$APPLELINK_NO_COMPATIBILITY_VERSION, $APPLELINK_NO_CURRENT_VERSION,
$FRAMEWORKPATHPREFIX, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULEPREFIX,
$LDMODULESUFFIX, $LINKCOM, $SHLINKCOM, $SHLINKFLAGS,
$_APPLELINK_COMPATIBILITY_VERSION, $_APPLELINK_CURRENT_VERSION,
$_FRAMEWORKPATH, $_FRAMEWORKS.

Uses: $FRAMEWORKSFLAGS.

ar
Sets construction variables for the ar library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX, $RANLIB, $RANLIBCOM, $RANLIBFLAGS.

as
Sets construction variables for the as assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

298

bcc32
Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM, $CCFLAGS, $CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX, $CPPDEFSUFFIX,
$INCPREFIX, $INCSUFFIX, $SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHOBJSUFFIX.

Uses: $_CPPDEFFLAGS, $_CPPINCFLAGS.

cc
Sets construction variables for generic POSIX C compilers.

Sets: $CC, $CCCOM, $CCDEPFLAGS, $CCFLAGS, $CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX,
$CPPDEFSUFFIX, $FRAMEWORKPATH, $FRAMEWORKS, $INCPREFIX, $INCSUFFIX, $SHCC,
$SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHOBJSUFFIX.

Uses: $CCCOMSTR, $PLATFORM, $SHCCCOMSTR.

clang
Set construction variables for the Clang C compiler.

Sets: $CC, $CCDEPFLAGS, $CCVERSION, $SHCCFLAGS.

clangxx
Set construction variables for the Clang C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS, $SHOBJSUFFIX,
$STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME.

compilation_db
Sets up CompilationDatabase builder which generates a clang tooling compatible compilation database.

Sets: $COMPILATIONDB_COMSTR, $COMPILATIONDB_PATH_FILTER,
$COMPILATIONDB_USE_ABSPATH.

cvf
Sets construction variables for the Compaq Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANMODDIR, $FORTRANMODDIRPREFIX,
$FORTRANMODDIRSUFFIX, $FORTRANPPCOM, $OBJSUFFIX, $SHFORTRANCOM, $SHFORTRANPPCOM.

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANINCFLAGS,
$_FORTRANMODFLAG.

cXX
Sets construction variables for generic POSIX C++ compilers.

Sets: $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM, $CXXFILESUFFIX, $CXXFLAGS,
$INCPREFIX, $INCSUFFIX, $OBJSUFFIX, $SHCXX, $SHCXXCOM, $SHCXXFLAGS, $SHOBJSUFFIX.

Uses: $CXXCOMSTR, $SHCXXCOMSTR.

cyglink
Set construction variables for cygwin linker/loader.

Sets: $IMPLIBPREFIX, $IMPLIBSUFFIX, $LDMODULEVERSIONFLAGS, $LINKFLAGS,
$RPATHPREFIX, $RPATHSUFFIX, $SHLIBPREFIX, $SHLIBSUFFIX, $SHLIBVERSIONFLAGS,
$SHLINKCOM, $SHLINKFLAGS, $_LDMODULEVERSIONFLAGS, $_SHLIBVERSIONFLAGS.

299

default
Sets construction variables for a default list of Tool modules. Use default in the tools list to retain the original
defaults, since the tools parameter is treated as a literal statement of the tools to be made available in that
construction environment, not an addition.

The list of tools selected by default is not static, but is dependent both on the platform and on the software installed
on the platform. Some tools will not initialize if an underlying command is not found, and some tools are selected
from a list of choices on a first-found basis. The finished tool list can be examined by inspecting the $TOOLS
construction variable in the construction environment.

On all platforms, the tools from the following list are selected if their respective conditions are met: filesystem;,
wix, lex, yacc, rpcgen, swig, jar, javac, javah, rmic, dvipdf, dvips, gs, tex, latex,
pdflatex, pdftex, tar, zip, textfile.

On Linux systems, the default tools list selects (first-found): a C compiler from gcc, intelc, icc, cc; a C
++ compiler from g++, intelc, icc, cXX; an assembler from gas, nasm, masm; a linker from gnulink,
ilink; a Fortran compiler from gfortran, g77, ifort, ifl, f95, f90, f77; and a static archiver ar. It
also selects all found from the list m4 rpm.

On Windows systems, the default tools list selects (first-found): a C compiler from msvc, mingw, gcc, intelc,
icl, icc, cc, bcc32; a C++ compiler from msvc, intelc, icc, g++, cXX, bcc32; an assembler from masm,
nasm, gas, 386asm; a linker from mslink, gnulink, ilink, linkloc, ilink32; a Fortran compiler
from gfortran, g77, ifl, cvf, f95, f90, fortran; and a static archiver from mslib, ar, tlib; It also
selects all found from the list msvs, midl.

On MacOS systems, the default tools list selects (first-found): a C compiler from gcc, cc; a C++ compiler from
g++, cXX; an assembler as; a linker from applelink, gnulink; a Fortran compiler from gfortran, f95,
f90, g77; and a static archiver ar. It also selects all found from the list m4, rpm.

Default lists for other platforms can be found by examining the scons source code (see SCons/Tool/
__init__.py).

dmd
Sets construction variables for D language compiler DMD.

Sets: $DC, $DCOM, $DDEBUG, $DDEBUGPREFIX, $DDEBUGSUFFIX, $DFILESUFFIX,
$DFLAGPREFIX, $DFLAGS, $DFLAGSUFFIX, $DINCPREFIX, $DINCSUFFIX, $DLIB,
$DLIBCOM, $DLIBDIRPREFIX, $DLIBDIRSUFFIX, $DLIBFLAGPREFIX, $DLIBFLAGSUFFIX,
$DLIBLINKPREFIX, $DLIBLINKSUFFIX, $DLINK, $DLINKCOM, $DLINKFLAGPREFIX,
$DLINKFLAGS, $DLINKFLAGSUFFIX, $DPATH, $DRPATHPREFIX, $DRPATHSUFFIX, $DVERPREFIX,
$DVERSIONS, $DVERSUFFIX, $SHDC, $SHDCOM, $SHDLIBVERSIONFLAGS, $SHDLINK,
$SHDLINKCOM, $SHDLINKFLAGS.

docbook
This tool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook XSL
stylesheets as of version 1.76.1. As long as you don't specify your own stylesheets for customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet utils/xmldepend.xsl by Paul DuBois is used for this purpose.

Note, that there is no support for XML catalog resolving offered! This tool calls the XSLT processors and PDF
renderers with the stylesheets you specified, that's it. The rest lies in your hands and you still have to know what
you're doing when resolving names via a catalog.

300

For activating the tool "docbook", you have to add its name to the Environment constructor, like this

env = Environment(tools=['docbook'])

On its startup, the docbook tool tries to find a required xsltproc processor, and a PDF renderer, e.g. fop. So
make sure that these are added to your system's environment PATH and can be called directly without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

• the Python lxml binding to libxml2, or

• a standalone XSLT processor, currently detected are xsltproc, saxon, saxon-xslt and xalan.

Rendering to PDF requires you to have one of the applications fop or xep installed.

Creating a HTML or PDF document is very simple and straightforward. Say

env = Environment(tools=['docbook'])
env.DocbookHtml('manual.html', 'manual.xml')
env.DocbookPdf('manual.pdf', 'manual.xml')

to get both outputs from your XML source manual.xml. As a shortcut, you can give the stem of the filenames
alone, like this:

env = Environment(tools=['docbook'])
env.DocbookHtml('manual')
env.DocbookPdf('manual')

and get the same result. Target and source lists are also supported:

env = Environment(tools=['docbook'])
env.DocbookHtml(['manual.html','reference.html'], ['manual.xml','reference.xml'])

or even

env = Environment(tools=['docbook'])
env.DocbookHtml(['manual','reference'])

Important

Whenever you leave out the list of sources, you may not specify a file extension! The Tool uses the given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are valid for the Builders DocbookHtml, DocbookPdf, DocbookEpub,
DocbookSlidesPdf and DocbookXInclude. For the DocbookMan transformation you can specify a
target name, but the actual output names are automatically set from the refname entries in your XML source.

The Builders DocbookHtmlChunked, DocbookHtmlhelp and DocbookSlidesHtml are special, in that:

1. they create a large set of files, where the exact names and their number depend on the content of the source
file, and

2. the main target is always named index.html, i.e. the output name for the XSL transformation is not picked
up by the stylesheets.

As a result, there is simply no use in specifying a target HTML name. So the basic syntax for these builders is
always:

301

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('manual')

If you want to use a specific XSL file, you can set the additional xsl parameter to your Builder call as follows:

env.DocbookHtml('other.html', 'manual.xml', xsl='html.xsl')

Since this may get tedious if you always use the same local naming for your customized XSL files, e.g. html.xsl
for HTML and pdf.xsl for PDF output, a set of variables for setting the default XSL name is provided. These
are:

DOCBOOK_DEFAULT_XSL_HTML
DOCBOOK_DEFAULT_XSL_HTMLCHUNKED
DOCBOOK_DEFAULT_XSL_HTMLHELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB
DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLIDESPDF
DOCBOOK_DEFAULT_XSL_SLIDESHTML

and you can set them when constructing your environment:

env = Environment(
 tools=['docbook'],
 DOCBOOK_DEFAULT_XSL_HTML='html.xsl',
 DOCBOOK_DEFAULT_XSL_PDF='pdf.xsl',
)
env.DocbookHtml('manual') # now uses html.xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTML,
$DOCBOOK_DEFAULT_XSL_HTMLCHUNKED, $DOCBOOK_DEFAULT_XSL_HTMLHELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT_XSL_PDF,
$DOCBOOK_DEFAULT_XSL_SLIDESHTML, $DOCBOOK_DEFAULT_XSL_SLIDESPDF, $DOCBOOK_FOP,
$DOCBOOK_FOPCOM, $DOCBOOK_FOPFLAGS, $DOCBOOK_XMLLINT, $DOCBOOK_XMLLINTCOM,
$DOCBOOK_XMLLINTFLAGS, $DOCBOOK_XSLTPROC, $DOCBOOK_XSLTPROCCOM,
$DOCBOOK_XSLTPROCFLAGS, $DOCBOOK_XSLTPROCPARAMS.

Uses: $DOCBOOK_FOPCOMSTR, $DOCBOOK_XMLLINTCOMSTR, $DOCBOOK_XSLTPROCCOMSTR.

dvi
Attaches the DVI builder to the construction environment.

dvipdf
Sets construction variables for the dvipdf utility.

Sets: $DVIPDF, $DVIPDFCOM, $DVIPDFFLAGS.

Uses: $DVIPDFCOMSTR.

dvips
Sets construction variables for the dvips utility.

Sets: $DVIPS, $DVIPSFLAGS, $PSCOM, $PSPREFIX, $PSSUFFIX.

Uses: $PSCOMSTR.

302

f03
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM, $F03FLAGS, $F03PPCOM, $SHF03, $SHF03COM, $SHF03FLAGS, $SHF03PPCOM,
$_F03INCFLAGS.

Uses: $F03COMSTR, $F03PPCOMSTR, $FORTRANCOMMONFLAGS, $SHF03COMSTR, $SHF03PPCOMSTR.

f08
Set construction variables for generic POSIX Fortran 08 compilers.

Sets: $F08, $F08COM, $F08FLAGS, $F08PPCOM, $SHF08, $SHF08COM, $SHF08FLAGS, $SHF08PPCOM,
$_F08INCFLAGS.

Uses: $F08COMSTR, $F08PPCOMSTR, $FORTRANCOMMONFLAGS, $SHF08COMSTR, $SHF08PPCOMSTR.

f77
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM, $F77FILESUFFIXES, $F77FLAGS, $F77PPCOM, $F77PPFILESUFFIXES,
$FORTRAN, $FORTRANCOM, $FORTRANFLAGS, $SHF77, $SHF77COM, $SHF77FLAGS, $SHF77PPCOM,
$SHFORTRAN, $SHFORTRANCOM, $SHFORTRANFLAGS, $SHFORTRANPPCOM, $_F77INCFLAGS.

Uses: $F77COMSTR, $F77PPCOMSTR, $FORTRANCOMMONFLAGS, $FORTRANCOMSTR,
$FORTRANFLAGS, $FORTRANPPCOMSTR, $SHF77COMSTR, $SHF77PPCOMSTR, $SHFORTRANCOMSTR,
$SHFORTRANFLAGS, $SHFORTRANPPCOMSTR.

f90
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM, $F90FLAGS, $F90PPCOM, $SHF90, $SHF90COM, $SHF90FLAGS, $SHF90PPCOM,
$_F90INCFLAGS.

Uses: $F90COMSTR, $F90PPCOMSTR, $FORTRANCOMMONFLAGS, $SHF90COMSTR, $SHF90PPCOMSTR.

f95
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95COM, $F95FLAGS, $F95PPCOM, $SHF95, $SHF95COM, $SHF95FLAGS, $SHF95PPCOM,
$_F95INCFLAGS.

Uses: $F95COMSTR, $F95PPCOMSTR, $FORTRANCOMMONFLAGS, $SHF95COMSTR, $SHF95PPCOMSTR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANFLAGS, $SHFORTRAN, $SHFORTRANCOM,
$SHFORTRANFLAGS, $SHFORTRANPPCOM.

Uses: $CPPFLAGS, $FORTRANCOMSTR, $FORTRANPPCOMSTR, $SHFORTRANCOMSTR,
$SHFORTRANPPCOMSTR, $_CPPDEFFLAGS.

g++
Set construction variables for the g++ C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS, $SHOBJSUFFIX.

303

g77
Set construction variables for the g77 Fortran compiler.

Sets: $F77, $F77COM, $F77FILESUFFIXES, $F77PPCOM, $F77PPFILESUFFIXES, $FORTRAN,
$FORTRANCOM, $FORTRANPPCOM, $SHF77, $SHF77COM, $SHF77FLAGS, $SHF77PPCOM,
$SHFORTRAN, $SHFORTRANCOM, $SHFORTRANFLAGS, $SHFORTRANPPCOM.

Uses: $F77FLAGS, $FORTRANCOMMONFLAGS, $FORTRANFLAGS.

gas
Sets construction variables for the gas assembler. Calls the as tool.

Sets: $AS.

gcc
Set construction variables for the gcc C compiler.

Sets: $CC, $CCDEPFLAGS, $CCVERSION, $SHCCFLAGS.

gdc
Sets construction variables for the D language compiler GDC.

Sets: $DC, $DCOM, $DDEBUG, $DDEBUGPREFIX, $DDEBUGSUFFIX, $DFILESUFFIX,
$DFLAGPREFIX, $DFLAGS, $DFLAGSUFFIX, $DINCPREFIX, $DINCSUFFIX, $DLIB,
$DLIBCOM, $DLIBDIRPREFIX, $DLIBDIRSUFFIX, $DLIBFLAGPREFIX, $DLIBFLAGSUFFIX,
$DLIBLINKPREFIX, $DLIBLINKSUFFIX, $DLINK, $DLINKCOM, $DLINKFLAGPREFIX,
$DLINKFLAGS, $DLINKFLAGSUFFIX, $DPATH, $DRPATHPREFIX, $DRPATHSUFFIX, $DVERPREFIX,
$DVERSIONS, $DVERSUFFIX, $SHDC, $SHDCOM, $SHDLIBVERSIONFLAGS, $SHDLINK,
$SHDLINKCOM, $SHDLINKFLAGS.

gettext
This is actually a toolset, which supports internationalization and localization of software being constructed with
SCons. The toolset loads following tools:

• xgettext - to extract internationalized messages from source code to POT file(s),

• msginit - may be optionally used to initialize PO files,

• msgmerge - to update PO files, that already contain translated messages,

• msgfmt - to compile textual PO file to binary installable MO file.

When you enable gettext, it internally loads all abovementioned tools, so you're encouraged to see their
individual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related to
software internationalization. You may be however interested in top-level Translate builder.

To use gettext tools add 'gettext' tool to your environment:

 env = Environment(tools = ['default', 'gettext'])

gfortran
Sets construction variables for the GNU Fortran compiler. Calls the fortran Tool module to set variables.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHF90FLAGS, $SHF95,
$SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

304

gnulink
Set construction variables for GNU linker/loader.

Sets: $LDMODULEVERSIONFLAGS, $RPATHPREFIX, $RPATHSUFFIX, $SHLIBVERSIONFLAGS,
$SHLINKFLAGS, $_LDMODULESONAME, $_SHLIBSONAME.

gs
This Tool sets the required construction variables for working with the Ghostscript software. It also registers an
appropriate Action with the PDF Builder, such that the conversion from PS/EPS to PDF happens automatically
for the TeX/LaTeX toolchain. Finally, it adds an explicit Gs Builder for Ghostscript to the environment.

Sets: $GS, $GSCOM, $GSFLAGS.

Uses: $GSCOMSTR.

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for aCC compilers on HP/UX systems. Calls the cXX tool for additional variables.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS.

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $LINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

icc
Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXXCOM,
$CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

icl
Sets construction variables for the Intel C/C++ compiler. Calls the intelc Tool module to set its variables.

ifl
Sets construction variables for the Intel Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANPPCOM, $SHFORTRANCOM, $SHFORTRANPPCOM.

Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANINCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHF90FLAGS, $SHF95,
$SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for the ilink linker on OS/2 systems.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS.

305

ilink32
Sets construction variables for the Borland ilink32 linker.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS.

install
Sets construction variables for file and directory installation.

Sets: $INSTALL, $INSTALLSTR.

intelc
Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Calls the gcc
or msvc (on Linux and Windows, respectively) tool to set underlying variables.

Sets: $AR, $CC, $CXX, $INTEL_C_COMPILER_VERSION, $LINK.

jar
Sets construction variables for the jar utility.

Sets: $JAR, $JARCOM, $JARFLAGS, $JARSUFFIX.

Uses: $JARCOMSTR.

javac
Sets construction variables for the javac compiler.

Sets: $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM, $JAVACFLAGS, $JAVACLASSPATH,
$JAVACLASSSUFFIX, $JAVAINCLUDES, $JAVASOURCEPATH, $JAVASUFFIX.

Uses: $JAVACCOMSTR.

javah
Sets construction variables for the javah tool.

Sets: $JAVACLASSSUFFIX, $JAVAH, $JAVAHCOM, $JAVAHFLAGS.

Uses: $JAVACLASSPATH, $JAVAHCOMSTR.

latex
Sets construction variables for the latex utility.

Sets: $LATEX, $LATEXCOM, $LATEXFLAGS.

Uses: $LATEXCOMSTR.

ldc
Sets construction variables for the D language compiler LDC2.

Sets: $DC, $DCOM, $DDEBUG, $DDEBUGPREFIX, $DDEBUGSUFFIX, $DFILESUFFIX,
$DFLAGPREFIX, $DFLAGS, $DFLAGSUFFIX, $DINCPREFIX, $DINCSUFFIX, $DLIB,
$DLIBCOM, $DLIBDIRPREFIX, $DLIBDIRSUFFIX, $DLIBFLAGPREFIX, $DLIBFLAGSUFFIX,
$DLIBLINKPREFIX, $DLIBLINKSUFFIX, $DLINK, $DLINKCOM, $DLINKFLAGPREFIX,
$DLINKFLAGS, $DLINKFLAGSUFFIX, $DPATH, $DRPATHPREFIX, $DRPATHSUFFIX, $DVERPREFIX,
$DVERSIONS, $DVERSUFFIX, $SHDC, $SHDCOM, $SHDLIBVERSIONFLAGS, $SHDLINK,
$SHDLINKCOM, $SHDLINKFLAGS.

306

lex
Sets construction variables for the lex lexical analyser.

Sets: $LEX, $LEXCOM, $LEXFLAGS, $LEXUNISTD.

Uses: $LEXCOMSTR, $LEXFLAGS, $LEX_HEADER_FILE, $LEX_TABLES_FILE.

link
Sets construction variables for generic POSIX linkers. This is a "smart" linker tool which selects a compiler to
complete the linking based on the types of source files.

Sets: $LDMODULE, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULENOVERSIONSYMLINKS,
$LDMODULEPREFIX, $LDMODULESUFFIX, $LDMODULEVERSION, $LDMODULEVERSIONFLAGS,
$LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK,
$LINKCOM, $LINKFLAGS, $SHLIBSUFFIX, $SHLINK, $SHLINKCOM, $SHLINKFLAGS,
$__LDMODULEVERSIONFLAGS, $__SHLIBVERSIONFLAGS.

Uses: $LDMODULECOMSTR, $LINKCOMSTR, $SHLINKCOMSTR.

linkloc
Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

Uses: $LINKCOMSTR, $SHLINKCOMSTR.

m4
Sets construction variables for the m4 macro processor.

Sets: $M4, $M4COM, $M4FLAGS.

Uses: $M4COMSTR.

masm
Sets construction variables for the Microsoft assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $ASCOMSTR, $ASPPCOMSTR, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

midl
Sets construction variables for the Microsoft IDL compiler.

Sets: $MIDL, $MIDLCOM, $MIDLFLAGS.

Uses: $MIDLCOMSTR.

mingw
Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets: $AS, $CC, $CXX, $LDMODULECOM, $LIBPREFIX, $LIBSUFFIX, $OBJSUFFIX, $RC,
$RCCOM, $RCFLAGS, $RCINCFLAGS, $RCINCPREFIX, $RCINCSUFFIX, $SHCCFLAGS, $SHCXXFLAGS,
$SHLINKCOM, $SHLINKFLAGS, $SHOBJSUFFIX, $WINDOWSDEFPREFIX, $WINDOWSDEFSUFFIX.

Uses: $RCCOMSTR, $SHLINKCOMSTR.

307

msgfmt
This scons tool is a part of scons gettext toolset. It provides scons interface to msgfmt(1) command, which
generates binary message catalog (MO) from a textual translation description (PO).

Sets: $MOSUFFIX, $MSGFMT, $MSGFMTCOM, $MSGFMTCOMSTR, $MSGFMTFLAGS, $POSUFFIX.

Uses: $LINGUAS_FILE.

msginit
This scons tool is a part of scons gettext toolset. It provides scons interface to msginit(1) program, which
creates new PO file, initializing the meta information with values from user's environment (or options).

Sets: $MSGINIT, $MSGINITCOM, $MSGINITCOMSTR, $MSGINITFLAGS, $POAUTOINIT,
$POCREATE_ALIAS, $POSUFFIX, $POTSUFFIX, $_MSGINITLOCALE.

Uses: $LINGUAS_FILE, $POAUTOINIT, $POTDOMAIN.

msgmerge
This scons tool is a part of scons gettext toolset. It provides scons interface to msgmerge(1) command, which
merges two Uniform style .po files together.

Sets: $MSGMERGE, $MSGMERGECOM, $MSGMERGECOMSTR, $MSGMERGEFLAGS, $POSUFFIX,
$POTSUFFIX, $POUPDATE_ALIAS.

Uses: $LINGUAS_FILE, $POAUTOINIT, $POTDOMAIN.

mslib
Sets construction variables for the Microsoft mslib library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

mslink
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULEPREFIX, $LDMODULESUFFIX,
$LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS, $REGSVR, $REGSVRCOM, $REGSVRFLAGS, $SHLINK, $SHLINKCOM,
$SHLINKFLAGS, $WINDOWSDEFPREFIX, $WINDOWSDEFSUFFIX, $WINDOWSEXPPREFIX,
$WINDOWSEXPSUFFIX, $WINDOWSPROGMANIFESTPREFIX, $WINDOWSPROGMANIFESTSUFFIX,
$WINDOWSSHLIBMANIFESTPREFIX, $WINDOWSSHLIBMANIFESTSUFFIX, $WINDOWS_INSERT_DEF.

Uses: $LDMODULECOMSTR, $LINKCOMSTR, $REGSVRCOMSTR, $SHLINKCOMSTR.

mssdk
Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: %INCLUDE%, %LIB%, %LIBPATH% and %PATH%.

Uses: $MSSDK_DIR, $MSSDK_VERSION, $MSVS_VERSION.

msvc
Sets construction variables for the Microsoft Visual C++ compiler.

Sets: $BUILDERS, $CC, $CCCOM, $CCDEPFLAGS, $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS,
$CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM, $CXXFILESUFFIX,

308

$CXXFLAGS, $INCPREFIX, $INCSUFFIX, $OBJPREFIX, $OBJSUFFIX, $PCHCOM, $PCHPDBFLAGS,
$RC, $RCCOM, $RCFLAGS, $SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM,
$SHCXXFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

Uses: $CCCOMSTR, $CXXCOMSTR, $MSVC_NOTFOUND_POLICY, $MSVC_SCRIPTERROR_POLICY,
$MSVC_SCRIPT_ARGS, $MSVC_SDK_VERSION, $MSVC_SPECTRE_LIBS,
$MSVC_TOOLSET_VERSION, $MSVC_USE_SCRIPT, $MSVC_USE_SCRIPT_ARGS,
$MSVC_USE_SETTINGS, $MSVC_VERSION, $PCH, $PCHSTOP, $PDB, $SHCCCOMSTR, $SHCXXCOMSTR.

msvs
Sets construction variables for Microsoft Visual Studio.

Sets: $MSVSBUILDCOM, $MSVSCLEANCOM, $MSVSENCODING, $MSVSPROJECTCOM,
$MSVSREBUILDCOM, $MSVSSCONS, $MSVSSCONSCOM, $MSVSSCONSCRIPT, $MSVSSCONSFLAGS,
$MSVSSOLUTIONCOM.

mwcc
Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM,
$CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX, $MWCW_VERSION, $MWCW_VERSIONS, $SHCC,
$SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM, $SHCXXFLAGS.

Uses: $CCCOMSTR, $CXXCOMSTR, $SHCCCOMSTR, $SHCXXCOMSTR.

mwld
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM, $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX,
$LINK, $LINKCOM, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

nasm
Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $ASCOMSTR, $ASPPCOMSTR.

ninja
Sets up the Ninja builder, which generates a ninja build file, and then optionally runs ninja.

Note

This is an experimental feature. This functionality is subject to change and/or removal without a
deprecation cycle.

Sets: $IMPLICIT_COMMAND_DEPENDENCIES, $NINJA_ALIAS_NAME, $NINJA_CMD_ARGS,
$NINJA_COMPDB_EXPAND, $NINJA_DEPFILE_PARSE_FORMAT, $NINJA_DIR,
$NINJA_DISABLE_AUTO_RUN, $NINJA_ENV_VAR_CACHE, $NINJA_FILE_NAME,
$NINJA_FORCE_SCONS_BUILD, $NINJA_GENERATED_SOURCE_ALIAS_NAME,
$NINJA_GENERATED_SOURCE_SUFFIXES, $NINJA_MSVC_DEPS_PREFIX, $NINJA_POOL,
$NINJA_REGENERATE_DEPS, $NINJA_SCONS_DAEMON_KEEP_ALIVE,
$NINJA_SCONS_DAEMON_PORT, $NINJA_SYNTAX, $_NINJA_REGENERATE_DEPS_FUNC.

Uses: $AR, $ARCOM, $ARFLAGS, $CC, $CCCOM, $CCDEPFLAGS, $CCFLAGS, $CXX, $CXXCOM, $ESCAPE,
$LINK, $LINKCOM, $PLATFORM, $PRINT_CMD_LINE_FUNC, $PROGSUFFIX, $RANLIB, $RANLIBCOM,
$SHCCCOM, $SHCXXCOM, $SHLINK, $SHLINKCOM.

309

packaging
Sets construction variables for the Package Builder. If this tool is enabled, the --package-type command-
line option is also enabled.

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREFIX, $PDFSUFFIX.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: $LATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS.

Uses: $PDFLATEXCOMSTR.

pdftex
Sets construction variables for the pdftex utility.

Sets: $LATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM,
$PDFTEXFLAGS.

Uses: $PDFLATEXCOMSTR, $PDFTEXCOMSTR.

python
Loads the Python source scanner into the invoking environment. When loaded, the scanner will attempt to find
implicit dependencies for any Python source files in the list of sources provided to an Action that uses this
environment.

Available since scons 4.0..

qt
Placeholder tool to alert anyone still using qt tools to switch to qt3 or newer tool.

qt3
Sets construction variables for building Qt3 applications.

Note

This tool is only suitable for building targeted to Qt3, which is obsolete (the tool is deprecated since
4.3, and was renamed to qt3 in 4.5.0.). There are contributed tools for Qt4 and Qt5, see https://
github.com/SCons/scons-contrib [https://github.com/SCons/scons-contrib]. Qt4 has also passed end of
life for standard support (in Dec 2015).

Note paths for these construction variables are assembled using the os.path.join method so they will have
the appropriate separator at runtime, but are listed here in the various entries only with the '/' separator for
simplicity.

In addition, the construction variables $CPPPATH, $LIBPATH and $LIBS may be modified and the variables
$PROGEMITTER, $SHLIBEMITTER and $LIBEMITTER are modified. Because the build-performance is
affected when using this tool, you have to explicitly specify it at Environment creation:

Environment(tools=['default','qt3'])

The qt3 tool supports the following operations:

https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib

310

Automatic moc file generation from header files. You do not have to specify moc files explicitly, the tool does
it for you. However, there are a few preconditions to do so: Your header file must have the same filebase as
your implementation file and must stay in the same directory. It must have one of the suffixes .h, .hpp, .H,
.hxx, .hh. You can turn off automatic moc file generation by setting $QT3_AUTOSCAN to False. See also
the corresponding Moc Builder.

Automatic moc file generation from C++ files. As described in the Qt documentation, include the
moc file at the end of the C++ file. Note that you have to include the file, which is generated
by the transformation ${QT3_MOCCXXPREFIX}<basename>${QT3_MOCCXXSUFFIX}, by default
<basename>.mo. A warning is generated after building the moc file if you do not include the correct file. If
you are using VariantDir, you may need to specify duplicate=True. You can turn off automatic moc file
generation by setting $QT3_AUTOSCAN to False. See also the corresponding Moc Builder.

Automatic handling of .ui files. The implementation files generated from .ui files are handled much the same
as yacc or lex files. Each .ui file given as a source of Program, Library or SharedLibrary will generate
three files: the declaration file, the implementation file and a moc file. Because there are also generated headers,
you may need to specify duplicate=True in calls to VariantDir. See also the corresponding Uic Builder.

Sets: $QT3DIR, $QT3_AUTOSCAN, $QT3_BINPATH, $QT3_CPPPATH, $QT3_LIB, $QT3_LIBPATH,
$QT3_MOC, $QT3_MOCCXXPREFIX, $QT3_MOCCXXSUFFIX, $QT3_MOCFROMCXXCOM,
$QT3_MOCFROMCXXFLAGS, $QT3_MOCFROMHCOM, $QT3_MOCFROMHFLAGS, $QT3_MOCHPREFIX,
$QT3_MOCHSUFFIX, $QT3_UIC, $QT3_UICCOM, $QT3_UICDECLFLAGS, $QT3_UICDECLPREFIX,
$QT3_UICDECLSUFFIX, $QT3_UICIMPLFLAGS, $QT3_UICIMPLPREFIX, $QT3_UICIMPLSUFFIX,
$QT3_UISUFFIX.

Uses: $QT3DIR.

rmic
Sets construction variables for the rmic utility.

Sets: $JAVACLASSSUFFIX, $RMIC, $RMICCOM, $RMICFLAGS.

Uses: $RMICCOMSTR.

rpcgen
Sets construction variables for building with RPCGEN.

Sets: $RPCGEN, $RPCGENCLIENTFLAGS, $RPCGENFLAGS, $RPCGENHEADERFLAGS,
$RPCGENSERVICEFLAGS, $RPCGENXDRFLAGS.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, $ARCOMSTR, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX, $SHLINK, $SHLINKFLAGS.

Uses: $ARCOMSTR, $SHLINKCOMSTR.

sgic++
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBJSUFFIX.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBJSUFFIX.

311

sgilink
Sets construction variables for the SGI linker.

Sets: $LINK, $RPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

sunc++
Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHCXXFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

suncc
Sets construction variables for the Sun C compiler.

Sets: $CXX, $SHCCFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

sunf77
Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, $FORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90
Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, $FORTRAN, $SHF90, $SHF90FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf95
Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHF95, $SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink
Sets construction variables for the Sun linker.

Sets: $RPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

swig
Sets construction variables for the SWIG interface compiler.

Sets: $SWIG, $SWIGCFILESUFFIX, $SWIGCOM, $SWIGCXXFILESUFFIX, $SWIGDIRECTORSUFFIX,
$SWIGFLAGS, $SWIGINCPREFIX, $SWIGINCSUFFIX, $SWIGPATH, $SWIGVERSION,
$_SWIGINCFLAGS.

Uses: $SWIGCOMSTR.

tar
Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM, $TARFLAGS, $TARSUFFIX.

Uses: $TARCOMSTR.

312

tex
Sets construction variables for the TeX formatter and typesetter.

Sets: $BIBTEX, $BIBTEXCOM, $BIBTEXFLAGS, $LATEX, $LATEXCOM, $LATEXFLAGS, $MAKEINDEX,
$MAKEINDEXCOM, $MAKEINDEXFLAGS, $TEX, $TEXCOM, $TEXFLAGS.

Uses: $BIBTEXCOMSTR, $LATEXCOMSTR, $MAKEINDEXCOMSTR, $TEXCOMSTR.

textfile
Set construction variables for the Textfile and Substfile builders.

Sets: $FILE_ENCODING, $LINESEPARATOR, $SUBSTFILEPREFIX, $SUBSTFILESUFFIX,
$TEXTFILEPREFIX, $TEXTFILESUFFIX.

Uses: $SUBST_DICT.

tlib
Sets construction variables for the Borlan tib library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

xgettext
This scons tool is a part of scons gettext toolset. It provides scons interface to xgettext(1) program, which
extracts internationalized messages from source code. The tool provides POTUpdate builder to make PO
Template files.

Sets: $POTSUFFIX, $POTUPDATE_ALIAS, $XGETTEXTCOM, $XGETTEXTCOMSTR,
$XGETTEXTFLAGS, $XGETTEXTFROM, $XGETTEXTFROMPREFIX, $XGETTEXTFROMSUFFIX,
$XGETTEXTPATH, $XGETTEXTPATHPREFIX, $XGETTEXTPATHSUFFIX, $_XGETTEXTDOMAIN,
$_XGETTEXTFROMFLAGS, $_XGETTEXTPATHFLAGS.

Uses: $POTDOMAIN.

yacc
Sets construction variables for the yacc parser generator.

Sets: $YACC, $YACCCOM, $YACCFLAGS, $YACCHFILESUFFIX, $YACCHXXFILESUFFIX,
$YACCVCGFILESUFFIX, $YACC_GRAPH_FILE_SUFFIX.

Uses: $YACCCOMSTR, $YACCFLAGS, $YACC_GRAPH_FILE, $YACC_HEADER_FILE.

zip
Sets construction variables for the zip archiver.

Sets: $ZIP, $ZIPCOM, $ZIPCOMPRESSION, $ZIPFLAGS, $ZIPSUFFIX.

Uses: $ZIPCOMSTR.

313

Appendix D. Functions and
Environment Methods
This appendix contains descriptions of all of the function and construction environment methods in this version of
SCons

Action(action, [output, [var, ...]] [key=value, ...])
env.Action(action, [output, [var, ...]] [key=value, ...])

A factory function to create an Action object for the specified action. See the manpage section "Action Objects"
for a complete explanation of the arguments and behavior.

Note that the env.Action form of the invocation will expand construction variables in any argument strings,
including the action argument, at the time it is called using the construction variables in the env construction
environment through which env.Action was called. The Action global function form delays all variable
expansion until the Action object is actually used.

AddMethod(object, function, [name])
env.AddMethod(function, [name])

Adds function to an object as a method. function will be called with an instance object as the first argument
as for other methods. If name is given, it is used as the name of the new method, else the name of function
is used.

When the global function AddMethod is called, the object to add the method to must be passed as the first
argument; typically this will be Environment, in order to create a method which applies to all construction
environments subsequently constructed. When called using the env.AddMethod form, the method is added to
the specified construction environment only. Added methods propagate through env.Clone calls.

More examples:

Function to add must accept an instance argument.
The Python convention is to call this 'self'.
def my_method(self, arg):
 print("my_method() got", arg)

Use the global function to add a method to the Environment class:
AddMethod(Environment, my_method)
env = Environment()
env.my_method('arg')

Use the optional name argument to set the name of the method:
env.AddMethod(my_method, 'other_method_name')
env.other_method_name('another arg')

AddOption(opt_str, ..., attr=value, ...)
Adds a local (project-specific) command-line option. One or more opt_str values are the strings representing
how the option can be called, while the keyword arguments define attributes of the option. For the most part
these are the same as for the OptionParser.add_option method in the standard Python library module
optparse, but with a few additional capabilities noted below. See the optparse documentation [https://
docs.python.org/3/library/optparse.html] for a thorough discussion of its option-processing capabities. All options
added through AddOption are placed in a special "Local Options" option group.

In addition to the arguments and values supported by the optparse add_option method, AddOption allows
setting the nargs keyword value to a string '?' (question mark) to indicate that the option argument for that

https://docs.python.org/3/library/optparse.html
https://docs.python.org/3/library/optparse.html
https://docs.python.org/3/library/optparse.html

314

option string may be omitted. If the option string is present on the command line but has no matching option
argument, the value of the const keyword argument is produced as the value of the option. If the option string
is omitted from the command line, the value of the default keyword argument is produced, as usual; if there
is no default keyword argument in the AddOption call, None is produced.

optparse recognizes abbreviations of long option names, as long as they can be unambiguously resolved. For
example, if add_option is called to define a --devicename option, it will recognize --device, --dev
and so forth as long as there is no other option which could also match to the same abbreviation. Options added via
AddOption do not support the automatic recognition of abbreviations. Instead, to allow specific abbreviations,
include them as synonyms in the AddOption call itself.

Once a new command-line option has been added with AddOption, the option value may be accessed using
GetOption or env.GetOption. If the settable=True argument was supplied in the AddOption call,
the value may also be set later using SetOption or env.SetOption, if conditions in an SConscript
file require overriding any default value. Note however that a value specified on the command line will always
override a value set in an SConscript file.

Changed in 4.8.0: added the settable keyword argument to enable an added option to be settable via
SetOption.

Help text for an option is a combination of the string supplied in the help keyword argument to AddOption and
information collected from the other keyword arguments. Such help is displayed if the -h command line option
is used (but not with -H). Help for all local options is displayed under the separate heading Local Options. The
options are unsorted - they will appear in the help text in the order in which the AddOption calls occur.

Example:

AddOption(
 '--prefix',
 dest='prefix',
 nargs=1,
 type='string',
 action='store',
 metavar='DIR',
 help='installation prefix',
)
env = Environment(PREFIX=GetOption('prefix'))

For that example, the following help text would be produced:

Local Options:
 --prefix=DIR installation prefix

Help text for local options may be unavailable if the Help function has been called, see the Help documentation
for details.

Note

As an artifact of the internal implementation, the behavior of options added by AddOption which
take option arguments is undefined if whitespace (rather than an = sign) is used as the separator on the
command line. Users should avoid such usage; it is recommended to add a note to this effect to project
documentation if the situation is likely to arise. In addition, if the nargs keyword is used to specify
more than one following option argument (that is, with a value of 2 or greater), such arguments would
necessarily be whitespace separated, triggering the issue. Developers should not use AddOption this
way. Future versions of SCons will likely forbid such usage.

315

AddPostAction(target, action)
env.AddPostAction(target, action)

Arranges for the specified action to be performed after the specified target has been built. action may
be an Action object, or anything that can be converted into an Action object. See the manpage section "Action
Objects" for a complete explanation.

When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targets in the list.

foo = Program('foo.c')
remove execute permission from binary:
AddPostAction(foo, Chmod('$TARGET', "a-x"))

AddPreAction(target, action)
env.AddPreAction(target, action)

Arranges for the specified action to be performed before the specified target is built. action may be an
Action object, or anything that can be converted into an Action object. See the manpage section "Action Objects"
for a complete explanation.

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targets in the list.

Note that if any of the targets are built in multiple steps, the action will be invoked just before the "final" action that
specifically generates the specified target(s). For example, when building an executable program from a specified
source .c file via an intermediate object file:

foo = Program('foo.c')
AddPreAction(foo, 'pre_action')

The specified pre_action would be executed before scons calls the link command that actually generates the
executable program binary foo, not before compiling the foo.c file into an object file.

Alias(alias, [source, [action]])
env.Alias(alias, [source, [action]])

Creates an alias target that can be used as a reference to zero or more other targets, specified by the optional
source parameter. Aliases provide a way to give a shorter or more descriptive name to specific targets, and to
group multiple targets under a single name. The alias name, or an Alias Node object, may be used as a dependency
of any other target, including another alias.

alias and source may each be a string or Node object, or a list of strings or Node objects; if Nodes are used
for alias they must be Alias nodes. If source is omitted, the alias is created but has no reference; if selected
for building this will result in a “Nothing to be done.” message. An empty alias can be used to define the alias in
a visible place in the project; it can later be appended to in a subsidiary SConscript file with the actual target(s)
to refer to. The optional action parameter specifies an action or list of actions that will be executed whenever
the any of the alias targets are out-of-date.

Alias can be called for an existing alias, which appends the alias and/or action arguments to the existing
lists for that alias.

Returns a list of Alias Node objects representing the alias(es), which exist outside of any physical file system.
The alias name space is separate from the name space for tangible targets; to avoid confusion do not reuse target
names as alias names.

Examples:

316

Alias('install')
Alias('install', '/usr/bin')
Alias(['install', 'install-lib'], '/usr/local/lib')

env.Alias('install', ['/usr/local/bin', '/usr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env.Alias('update', ['file1', 'file2'], "update_database $SOURCES")

AllowSubstExceptions([exception, ...])
Specifies the exceptions that will be allowed when expanding construction variables. By default, any construction
variable expansions that generate a NameError or IndexError exception will expand to a '' (an empty
string) and not cause scons to fail. All exceptions not in the specified list will generate an error message and
terminate processing.

If AllowSubstExceptions is called multiple times, each call completely overwrites the previous list of
allowed exceptions.

Example:

Requires that all construction variable names exist.
(You may wish to do this if you want to enforce strictly
that all construction variables must be defined before use.)
AllowSubstExceptions()

Also allow a string containing a zero-division expansion
like '${1 / 0}' to evalute to ''.
AllowSubstExceptions(IndexError, NameError, ZeroDivisionError)

AlwaysBuild(target, ...)
env.AlwaysBuild(target, ...)

Marks each given target so that it is always assumed to be out of date, and will always be rebuilt if needed.
Note, however, that AlwaysBuild does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of a target specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to a single call to AlwaysBuild.

env.Append(key=val, [...])
Appends value(s) intelligently to construction variables in env. The construction variables and values to add to
them are passed as key=val pairs (Python keyword arguments). env.Append is designed to allow adding
values without having to think about the data type of an existing construction variable. Regular Python syntax
can also be used to manipulate the construction variable, but for that you may need to know the types involved,
for example pure Python lets you directly "add" two lists of strings, but adding a string to a list or a list to a
string requires different syntax - things Append takes care of. Some pre-defined construction variables do have
type expectations based on how SCons will use them: for example $CPPDEFINES is often a string or a list of
strings, but can also be a list of tuples or a dictionary; while $LIBEMITTER is expected to be a callable or list of
callables, and $BUILDERS is expected to be a dictionary. Consult the documentation for the various construction
variables for more details.

The following descriptions apply to both the Append and Prepend methods, as well as their Unique variants,
with the differences being the insertion point of the added values and whether duplication is allowed.

val can be almost any type. If env does not have a construction variable named key, then key is simply
stored with a value of val. Otherwise, val is combinined with the existing value, possibly converting into an
appropriate type which can hold the expanded contents. There are a few special cases to be aware of. Normally,

317

when two strings are combined, the result is a new string containing their concatenation (and you are responsible
for supplying any needed separation); however, the contents of $CPPDEFINES will will be postprocessed by
adding a prefix and/or suffix to each entry when the command line is produced, so SCons keeps them separate
- appending a string will result in a separate string entry, not a combined string. For $CPPDEFINES. as well
as $LIBS, and the various *PATH variables, SCons will amend the variable by supplying the compiler-specific
syntax (e.g. prepending a -D or /D prefix for $CPPDEFINES), so you should omit this syntax when adding
values to these variables. Examples (gcc syntax shown in the expansion of CPPDEFINES):

env = Environment(CXXFLAGS="-std=c11", CPPDEFINES="RELEASE")
print(f"CXXFLAGS = {env['CXXFLAGS']}, CPPDEFINES = {env['CPPDEFINES']}")
notice including a leading space in CXXFLAGS addition
env.Append(CXXFLAGS=" -O", CPPDEFINES="EXTRA")
print(f"CXXFLAGS = {env['CXXFLAGS']}, CPPDEFINES = {env['CPPDEFINES']}")
print("CPPDEFINES will expand to", env.subst('$_CPPDEFFLAGS'))

$ scons -Q
CXXFLAGS = -std=c11, CPPDEFINES = RELEASE
CXXFLAGS = -std=c11 -O, CPPDEFINES = deque(['RELEASE', 'EXTRA'])
CPPDEFINES will expand to -DRELEASE -DEXTRA
scons: `.' is up to date.

Because $CPPDEFINES is intended for command-line specification of C/C++ preprocessor macros, additional
syntax is accepted when adding to it. The preprocessor accepts arguments to predefine a macro name by itself (-
DFOO for most compilers, /DFOO for Microsoft C++), which gives it an implicit value of 1, or can be given with
a replacement value (-DBAR=TEXT). SCons follows these rules when adding to $CPPDEFINES:

• A string is split on spaces, giving an easy way to enter multiple macros in one addition. Use an = to specify
a valued macro.

• A tuple is treated as a valued macro. Use the value None if the macro should not have a value. It is an error
to supply more than two elements in such a tuple.

• A list is processed in order, adding each item without further interpretation. In this case, space-separated strings
are not split.

• A dictionary is processed in order, adding each key-value pair as a valued macro. Use the value None if the
macro should not have a value.

Examples:

env = Environment(CPPDEFINES="FOO")
print("CPPDEFINES =", env['CPPDEFINES'])
env.Append(CPPDEFINES="BAR=1")
print("CPPDEFINES =", env['CPPDEFINES'])
env.Append(CPPDEFINES=[("OTHER", 2)])
print("CPPDEFINES =", env['CPPDEFINES'])
env.Append(CPPDEFINES={"EXTRA": "arg"})
print("CPPDEFINES =", env['CPPDEFINES'])
print("CPPDEFINES will expand to", env.subst('$_CPPDEFFLAGS'))

$ scons -Q
CPPDEFINES = FOO

318

CPPDEFINES = deque(['FOO', 'BAR=1'])
CPPDEFINES = deque(['FOO', 'BAR=1', ('OTHER', 2)])
CPPDEFINES = deque(['FOO', 'BAR=1', ('OTHER', 2), ('EXTRA', 'arg')])
CPPDEFINES will expand to -DFOO -DBAR=1 -DOTHER=2 -DEXTRA=arg
scons: `.' is up to date.

Examples of adding multiple macros:

env = Environment()
env.Append(CPPDEFINES=[("ONE", 1), "TWO", ("THREE",)])
print("CPPDEFINES =", env['CPPDEFINES'])
env.Append(CPPDEFINES={"FOUR": 4, "FIVE": None})
print("CPPDEFINES =", env['CPPDEFINES'])
print("CPPDEFINES will expand to", env.subst('$_CPPDEFFLAGS'))

$ scons -Q
CPPDEFINES = [('ONE', 1), 'TWO', ('THREE',)]
CPPDEFINES = deque([('ONE', 1), 'TWO', ('THREE',), ('FOUR', 4), ('FIVE', None)])
CPPDEFINES will expand to -DONE=1 -DTWO -DTHREE -DFOUR=4 -DFIVE
scons: `.' is up to date.

Changed in version 4.5: clarifined the use of tuples vs. other types, handling is now consistent across the four
functions.

env = Environment()
env.Append(CPPDEFINES=("MACRO1", "MACRO2"))
print("CPPDEFINES =", env['CPPDEFINES'])
env.Append(CPPDEFINES=[("MACRO3", "MACRO4")])
print("CPPDEFINES =", env['CPPDEFINES'])
print("CPPDEFINES will expand to", env.subst('$_CPPDEFFLAGS'))

$ scons -Q
CPPDEFINES = ('MACRO1', 'MACRO2')
CPPDEFINES = deque(['MACRO1', 'MACRO2', ('MACRO3', 'MACRO4')])
CPPDEFINES will expand to -DMACRO1 -DMACRO2 -DMACRO3=MACRO4
scons: `.' is up to date.

See $CPPDEFINES for more details.

Appending a string val to a dictonary-typed construction variable enters val as the key in the dictionary, and
None as its value. Using a tuple type to supply a key-value pair only works for the special case of $CPPDEFINES
described above.

Although most combinations of types work without needing to know the details, some combinations do not make
sense and Python raises an exception.

When using env.Append to modify construction variables which are path specifications (conventionally, the
names of such end in PATH), it is recommended to add the values as a list of strings, even if you are only adding
a single string. The same goes for adding library names to $LIBS.

env.Append(CPPPATH=["#/include"])

319

See also env.AppendUnique, env.Prepend and env.PrependUnique.

env.AppendENVPath(name, newpath, [envname, sep, delete_existing=False])
Append path elements specified by newpath to the given search path string or list name in mapping envname
in the construction environment. Supplying envname is optional: the default is the execution environment $ENV.
Optional sep is used as the search path separator, the default is the platform's separator (os.pathsep). A
path element will only appear once. Any duplicates in newpath are dropped, keeping the last appearing (to
preserve path order). If delete_existing is False (the default) any addition duplicating an existing path
element is ignored; if delete_existing is True the existing value will be dropped and the path element
will be added at the end. To help maintain uniqueness all paths are normalized (using os.path.normpath
and os.path.normcase).

Example:

print('before:', env['ENV']['INCLUDE'])
include_path = '/foo/bar:/foo'
env.AppendENVPath('INCLUDE', include_path)
print('after:', env['ENV']['INCLUDE'])

Yields:

before: /foo:/biz
after: /biz:/foo/bar:/foo

See also env.PrependENVPath.

env.AppendUnique(key=val, [...], [delete_existing=False])
Append values to construction variables in the current construction environment, maintaining uniqueness. Works
like env.Append, except that values that would become duplicates are not added. If delete_existing is
set to a true value, then for any duplicate, the existing instance of val is first removed, then val is appended,
having the effect of moving it to the end.

Example:

env.AppendUnique(CCFLAGS='-g', FOO=['foo.yyy'])

See also env.Append, env.Prepend and env.PrependUnique.

Builder(action, [arguments])
env.Builder(action, [arguments])

Creates a Builder object for the specified action. See the manpage section "Builder Objects" for a complete
explanation of the arguments and behavior.

Note that the env.Builder() form of the invocation will expand construction variables in any arguments strings,
including the action argument, at the time it is called using the construction variables in the env construction
environment through which env.Builder was called. The Builder form delays all variable expansion until
after the Builder object is actually called.

CacheDir(cache_dir, custom_class=None)
env.CacheDir(cache_dir, custom_class=None)

Direct scons to maintain a derived-file cache in cache_dir. The derived files in the cache will be shared among
all the builds specifying the same cache_dir. Specifying a cache_dir of None disables derived file caching.

Calling the environment method env.CacheDir limits the effect to targets built through the specified
construction environment. Calling the global function CacheDir sets a global default that will be used by

320

all targets built through construction environments that do not set up environment-specific caching by calling
env.CacheDir.

Caching behavior can be configured by passing a specialized cache class as the optional custom_class
parameter. This class must be a subclass of SCons.CacheDir.CacheDir. SCons will internally invoke the
custom class for performing caching operations. If the parameter is omitted or set to None, SCons will use the
default SCons.CacheDir.CacheDir class.

When derived-file caching is being used and scons finds a derived file that needs to be rebuilt, it will first look
in the cache to see if a file with matching build signature exists (indicating the input file(s) and build action(s)
were identical to those for the current target), and if so, will retrieve the file from the cache. scons will report
Retrieved `file' from cache instead of the normal build message. If the derived file is not present in
the cache, scons will build it and then place a copy of the built file in the cache, identified by its build signature,
for future use.

The Retrieved `file' from cache messages are useful for human consumption, but less useful when
comparing log files between scons runs which will show differences that are noisy and not actually significant.
To disable, use the --cache-show option. With this option, scons changes printing to always show the action
that would have been used to build the file without caching.

Derived-file caching may be disabled for any invocation of scons by giving the --cache-disable command
line option; cache updating may be disabled, leaving cache fetching enabled, by giving the --cache-readonly
option.

If the --cache-force option is used, scons will place a copy of all derived files into the cache, even if they
already existed and were not built by this invocation. This is useful to populate a cache the first time a cache_dir
is used for a build, or to bring a cache up to date after a build with cache updating disabled (--cache-disable
or --cache-readonly) has been done.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of some tool are impossible to predict or prohibitively large.

Note that (at this time) SCons provides no facilities for managing the derived-file cache. It is up to the developer
to arrange for cache pruning, expiry, access control, etc. if needed.

Clean(targets, files_or_dirs)
env.Clean(targets, files_or_dirs)

This specifies a list of files or directories which should be removed whenever the targets are specified with the -
c command line option. The specified targets may be a list or an individual target. Multiple calls to Clean are
legal, and create new targets or add files and directories to the clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the Clean method, or as a list.
Clean will also accept the return value of any of the construction environment Builder methods. Examples:

The related NoClean function overrides calling Clean for the same target, and any targets passed to both
functions will not be removed by the -c option.

Examples:

Clean('foo', ['bar', 'baz'])
Clean('dist', env.Program('hello', 'hello.c'))
Clean(['foo', 'bar'], 'something_else_to_clean')

In this example, installing the project creates a subdirectory for the documentation. This statement causes the
subdirectory to be removed if the project is deinstalled.

321

Clean(docdir, os.path.join(docdir, projectname))

env.Clone([key=val, ...])
Returns an independent copy of a construction environment. If there are any unrecognized keyword arguments
specified, they are added as construction variables in the copy, overwriting any existing values for those keywords.
See the manpage section "Construction Environments" for more details.

Example:

env2 = env.Clone()
env3 = env.Clone(CCFLAGS='-g')

A list of tools and a toolpath may be specified, as in the Environment constructor:

def MyTool(env):
 env['FOO'] = 'bar'

env4 = env.Clone(tools=['msvc', MyTool])

The parse_flags keyword argument is also recognized, to allow merging command-line style arguments into
the appropriate construction variables (see env.MergeFlags).

create an environment for compiling programs that use wxWidgets
wx_env = env.Clone(parse_flags='!wx-config --cflags --cxxflags')

The variables keyword argument is also recognized, to allow (re)initializing construction variables from a
Variables object.

Changed in version 4.8.0: the variables parameter was added.

Command(target, source, action, [key=val, ...])
env.Command(target, source, action, [key=val, ...])

Creates an anonymous builder and calls it, thus recording action to build target from source into the
dependency tree. This can be more convenient for a single special-case build than having to define and add a
new named Builder.

The Command function accepts the source_scanner and target_scanner keyword arguments which
are used to specify custom scanners for the specified sources or targets. The value must be a Scanner object. For
example, the global DirScanner object can be used if any of the sources will be directories that must be scanned
on-disk for changes to files that aren't already specified in other Builder or function calls.

The Command function also accepts the source_factory and target_factory keyword arguments
which are used to specify factory functions to create SCons Nodes from any sources or targets specified as strings.
If any sources or targets are already Node objects, they are not further transformed even if a factory is specified
for them. The default for each is the Entry factory.

These four arguments, if given, are used in the creation of the Builder. Other Builder-specific keyword arguments
are not recognized as such. See the manpage section "Builder Objects" for more information about how these
arguments work in a Builder.

Any remaining keyword arguments are passed on to the generated builder when it is called, and behave
as described in the manpage section "Builder Methods", in short: recognized arguments have their specified

322

meanings, while the rest are used to override any same-named existing construction variables from the construction
environment.

action can be an external command, specified as a string, or a callable Python object; see the manpage section
"Action Objects" for more complete information. Also note that a string specifying an external command may be
preceded by an at-sign (@) to suppress printing the command in question, or by a hyphen (-) to ignore the exit
status of the external command.

Examples:

env.Command(
 target='foo.out',
 source='foo.in',
 action="$FOO_BUILD < $SOURCES > $TARGET"
)

env.Command(
 target='bar.out',
 source='bar.in',
 action=["rm -f $TARGET", "$BAR_BUILD < $SOURCES > $TARGET"],
 ENV={'PATH': '/usr/local/bin/'},
)

import os
def rename(env, target, source):
 os.rename('.tmp', str(target[0]))

env.Command(
 target='baz.out',
 source='baz.in',
 action=["$BAZ_BUILD < $SOURCES > .tmp", rename],
)

Note that the Command function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifies what type of entries they are. If necessary, you can explicitly
specify that targets or source nodes should be treated as directories by using the Dir or env.Dir functions.

Examples:

env.Command('ddd.list', Dir('ddd'), 'ls -l $SOURCE > $TARGET')

env['DISTDIR'] = 'destination/directory'
env.Command(env.Dir('$DISTDIR')), None, make_distdir)

Also note that SCons will usually automatically create any directory necessary to hold a target file, so you normally
don't need to create directories by hand.

Configure(env, [custom_tests, conf_dir, log_file, config_h])
env.Configure([custom_tests, conf_dir, log_file, config_h])

Creates a Configure object for integrated functionality similar to GNU autoconf. See the manpage section
"Configure Contexts" for a complete explanation of the arguments and behavior.

323

DebugOptions([json])
Allows setting options for SCons debug options. Currently the only supported value is json which sets the path
to the json file created when --debug=json is set.

DebugOptions(json='#/build/output/scons_stats.json')

New in version 4.6.0.

Decider(function)
env.Decider(function)

Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
the specified function. function can be the name of a function or one of the following strings that specify
the predefined decision function that will be applied:

"content"
Specifies that a target shall be considered out of date and rebuilt if the dependency's content has changed
since the last time the target was built, as determined by performing a checksum on the dependency's contents
using the selected hash function, and comparing it to the checksum recorded the last time the target was built.
content is the default decider.

Changed in version 4.1: The decider was renamed to content since the hash function is now selectable.
The former name, MD5, can still be used as a synonym, but is deprecated.

"content-timestamp"
Specifies that a target shall be considered out of date and rebuilt if the dependency's content has changed
since the last time the target was built, except that dependencies with a timestamp that matches the last time
the target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar
to the content behavior of always checksumming file contents, with an optimization of not checking the
contents of files whose timestamps haven't changed. The drawback is that SCons will not detect if a file's
content has changed but its timestamp is the same, as might happen in an automated script that runs a build,
updates a file, and runs the build again, all within a single second.

Changed in version 4.1: The decider was renamed to content-timestamp since the hash function is now
selectable. The former name, MD5-timestamp, can still be used as a synonym, but is deprecated.

"timestamp-newer"
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is newer than
the target file's timestamp. This is the behavior of the classic Make utility, and make can be used a synonym
for timestamp-newer.

"timestamp-match"
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the
classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that the target will also be rebuilt if a dependency file has been restored to a version with an earlier timestamp,
such as can happen when restoring files from backup archives.

Examples:

Use exact timestamp matches by default.
Decider('timestamp-match')

Use hash content signatures for any targets built
with the attached construction environment.

324

env.Decider('content')

In addition to the above already-available functions, the function argument may be a Python function you
supply. Such a function must accept the following four arguments:

dependency
The Node (file) which should cause the target to be rebuilt if it has "changed" since the last tme target
was built.

target
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed."

prev_ni
Stored information about the state of the dependency the last time the target was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

repo_node
If set, use this Node instead of the one specified by dependency to determine if the dependency has
changed. This argument is optional so should be written as a default argument (typically it would be written
as repo_node=None). A caller will normally only set this if the target only exists in a Repository.

The function should return a value which evaluates True if the dependency has "changed" since the last
time the target was built (indicating that the target should be rebuilt), and a value which evaluates False
otherwise (indicating that the target should not be rebuilt). Note that the decision can be made using whatever
criteria are appopriate. Ignoring some or all of the function arguments is perfectly normal.

Example:

def my_decider(dependency, target, prev_ni, repo_node=None):
 return not os.path.exists(str(target))

env.Decider(my_decider)

Default(target[, ...])
env.Default(target[, ...])

Specify default targets to the SCons target selection mechanism. Any call to Default will cause SCons to use
the defined default target list instead of its built-in algorithm for determining default targets (see the manpage
section "Target Selection").

target may be one or more strings, a list of strings, a NodeList as returned by a Builder, or None. A string
target may be the name of a file or directory, or a target previously defined by a call to Alias (defining the
alias later will still create the alias, but it will not be recognized as a default). Calls to Default are additive. A
target of None will clear any existing default target list; subsequent calls to Default will add to the (now
empty) default target list like normal.

Both forms of this call affect the same global list of default targets; the construction environment method applies
construction variable expansion to the targets.

The current list of targets added using Default is available in the DEFAULT_TARGETS list (see below).

Examples:

Default('foo', 'bar', 'baz')

325

env.Default(['a', 'b', 'c'])
hello = env.Program('hello', 'hello.c')
env.Default(hello)

DefaultEnvironment([key=value, ...])
Instantiates and returns the global construction environment object. The Default Environment is used internally
by SCons when executing a global function or the global form of a Builder method that requires access to a
construction environment.

On the first call, arguments are interpreted as for the Environment function. The Default Environment is a
singleton; subsequent calls to DefaultEnvironment return the already-constructed object, and any keyword
arguments are silently ignored.

The Default Environment can be modified after instantiation, similar to other construction environments, although
some construction environment methods may be unavailable. Modifying the Default Environment has no effect
on any other construction environment, either existing or newly constructed.

It is not necessary to explicitly call DefaultEnvironment. SCons instantiates the default environment
automatically when the build phase begins, if has not already been done. However, calling it explicitly provides
the opportunity to affect and examine its contents. Instantiation occurs even if nothing in the build system appars
to use it, due to internal uses.

If the project SConscript files do not use global functions or Builders, a small
performance gain may be achieved by calling DefaultEnvironment with an empty tools list
(DefaultEnvironment(tools=[])). This avoids the tool initialization cost for the Default Environment,
which is mainly of interest in the test suite where scons is launched repeatedly in a short time period.

Depends(target, dependency)
env.Depends(target, dependency)

Specifies an explicit dependency; the target will be rebuilt whenever the dependency has changed. Both
the specified target and dependency can be a string (usually the path name of a file or directory) or Node
objects, or a list of strings or Node objects (such as returned by a Builder call). This should only be necessary for
cases where the dependency is not caught by a Scanner for the file.

Example:

env.Depends('foo', 'other-input-file-for-foo')

mylib = env.Library('mylib.c')
installed_lib = env.Install('lib', mylib)
bar = env.Program('bar.c')

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program.
(Note that this is for example only. A "real" library
dependency would normally be configured through the $LIBS
and $LIBPATH variables, not using an env.Depends() call.)

env.Depends(bar, installed_lib)

env.Detect(progs)
Find an executable from one or more choices: progs may be a string or a list of strings. Returns the first
value from progs that was found, or None. Executable is searched by checking the paths in the execution
environment (env['ENV']['PATH']). On Windows systems, additionally applies the filename suffixes found

326

in the execution environment (env['ENV']['PATHEXT']) but will not include any such extension in the
return value. env.Detect is a wrapper around env.WhereIs.

env.Dictionary([vars])
Returns a dictionary object containing the construction variables in the construction environment. If there are any
arguments specified, the values of the specified construction variables are returned as a string (if one argument)
or as a list of strings.

Example:

cvars = env.Dictionary()
cc_values = env.Dictionary('CC', 'CCFLAGS', 'CCCOM')

Dir(name, [directory])
env.Dir(name, [directory])

Returns Directory Node(s). A Directory Node is an object that represents a directory. name can be a relative or
absolute path or a list of such paths. directory is an optional directory that will be used as the parent directory.
If no directory is specified, the current script's directory is used as the parent.

If name is a single pathname, the corresponding node is returned. If name is a list, SCons returns a list of nodes.
Construction variables are expanded in name.

Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see manpage section
"Filesystem Nodes" for more information.

env.Dump([key, ...], [format=])
Serializes construction variables from the current construction environment to a string. The method supports the
following formats specified by format, which must be used a a keyword argument:

pretty
Returns a pretty-printed representation of the variables (this is the default). The variables will be presented
in Python dict form.

json
Returns a JSON-formatted string representation of the variables. The variables will be presented as a JSON
object literal, the JSON equivalent of a Python dict.

If no key is supplied, all the construction variables are serialized. If one or more keys are supplied, only those
keys and their values are serialized.

Changed in NEXT_VERSION: More than one key can be specified. The returned string always looks like a dict
(or JSON equivalent); previously a single key serialized only the value, not the key with the value.

This SConstruct:

env = Environment()
print(env.Dump('CCCOM'))
print(env.Dump('CC', 'CCFLAGS', format='json'))

will print something like:

{'CCCOM': '$CC -o $TARGET -c $CFLAGS $CCFLAGS $_CCCOMCOM $SOURCES'}
{

327

 "CC": "gcc",
 "CCFLAGS": []
}

While this SConstruct:

env = Environment()
print(env.Dump())

will print something like:

{ 'AR': 'ar',
 'ARCOM': '$AR $ARFLAGS $TARGET $SOURCES\n$RANLIB $RANLIBFLAGS $TARGET',
 'ARFLAGS': ['r'],
 'AS': 'as',
 'ASCOM': '$AS $ASFLAGS -o $TARGET $SOURCES',
 'ASFLAGS': [],
 ...

EnsurePythonVersion(major, minor)
Ensure that the Python version is at least major.minor. This function will print out an error message and exit
SCons with a non-zero exit code if the actual Python version is not late enough.

Example:

EnsurePythonVersion(2,2)

EnsureSConsVersion(major, minor, [revision])
Ensure that the SCons version is at least major.minor, or major.minor.revision. if revision is
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

Examples:

EnsureSConsVersion(0,14)

EnsureSConsVersion(0,96,90)

Environment([key=value, ...])
env.Environment([key=value, ...])

Return a new construction environment initialized with the specified key=value pairs. The keyword arguments
parse_flags, platform, toolpath, tools and variables are specially recognized and do not lead to
construction variable creation. See the manpage section "Construction Environments" for more details.

Execute(action, [actionargs ...])
env.Execute(action, [actionargs ...])

Executes an Action. action may be an Action object or it may be a command-line string, list of commands,
or executable Python function, each of which will first be converted into an Action object and then executed.
Any additional arguments to Execute are passed on to the Action factory function which actually creates the
Action object (see the manpage section Action Objects for a description). Example:

328

Execute(Copy('file.out', 'file.in'))

Execute performs its action immediately, as part of the SConscript-reading phase. There are no sources or targets
declared in an Execute call, so any objects it manipulates will not be tracked as part of the SCons dependency
graph. In the example above, neither file.out nor file.in will be tracked objects.

Execute returns the exit value of the command or return value of the Python function. scons prints an error
message if the executed action fails (exits with or returns a non-zero value), however it does not, automatically
terminate the build for such a failure. If you want the build to stop in response to a failed Execute call, you
must explicitly check for a non-zero return value:

if Execute("mkdir sub/dir/ectory"):
 # The mkdir failed, don't try to build.
 Exit(1)

Exit([value])
This tells scons to exit immediately with the specified value. A default exit value of 0 (zero) is used if no value
is specified.

Export([vars...], [key=value...])
env.Export([vars...], [key=value...])

Exports variables for sharing with other SConscript files. The variables are added to a global collection where
they can be imported by other SConscript files. vars may be one or more strings, or a list of strings. If any string
contains whitespace, it is split automatically into individual strings. Each string must match the name of a variable
that is in scope during evaluation of the current SConscript file, or an exception is raised.

A vars argument may also be a dictionary or individual keyword arguments; in accordance with Python syntax
rules, keyword arguments must come after any non-keyword arguments. The dictionary/keyword form can be
used to map the local name of a variable to a different name to be used for imports. See the Examples for an
illustration of the syntax.

Export calls are cumulative. Specifying a previously exported variable will replace the previous value in the
collection. Both local variables and global variables can be exported.

To use an exported variable, an SConscript must call Import to bring it into its own scope. Importing creates
an additional reference to the object that was originally exported, so if that object is mutable, changes made will
be visible to other users of that object.

Examples:

env = Environment()
Make env available for all SConscript files to Import().
Export("env")

package = 'my_name'
Make env and package available for all SConscript files:.
Export("env", "package")

Make env and package available for all SConscript files:
Export(["env", "package"])

Make env available using the name debug:
Export(debug=env)

329

Make env available using the name debug:
Export({"debug": env})

Note that the SConscript function also supports an exports argument that allows exporting one or more
variables to the SConscript files invoked by that call (only). See the description of that function for details.

File(name, [directory])
env.File(name, [directory])

Returns File Node(s). A File Node is an object that represents a file. name can be a relative or absolute path or a
list of such paths. directory is an optional directory that will be used as the parent directory. If no directory
is specified, the current script's directory is used as the parent.

If name is a single pathname, the corresponding node is returned. If name is a list, SCons returns a list of nodes.
Construction variables are expanded in name.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see manpage section "Filesystem Nodes"
for more information.

FindFile(file, dirs)
env.FindFile(file, dirs)

Search for file in the path specified by dirs. dirs may be a list of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.

Example:

foo = env.FindFile('foo', ['dir1', 'dir2'])

FindInstalledFiles()
env.FindInstalledFiles()

Returns the list of targets set up by the Install or InstallAs builders.

This function serves as a convenient method to select the contents of a binary package.

Example:

Install('/bin', ['executable_a', 'executable_b'])

will return the file node list
['/bin/executable_a', '/bin/executable_b']
FindInstalledFiles()

Install('/lib', ['some_library'])

will return the file node list
['/bin/executable_a', '/bin/executable_b', '/lib/some_library']
FindInstalledFiles()

FindPathDirs(variable)
Returns a function (actually a callable Python object) intended to be used as the path_function of a Scanner
object. The returned object will look up the specified variable in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $LIBPATH,
etc.).

330

Note that use of FindPathDirs is generally preferable to writing your own path_function for the
following reasons: 1) The returned list will contain all appropriate directories found in source trees (when
VariantDir is used) or in code repositories (when Repository or the -Y option are used). 2) scons will
identify expansions of variable that evaluate to the same list of directories as, in fact, the same list, and avoid
re-scanning the directories for files, when possible.

Example:

def my_scan(node, env, path, arg):
 # Code to scan file contents goes here...
 return include_files

scanner = Scanner(name = 'myscanner',
 function = my_scan,
 path_function = FindPathDirs('MYPATH'))

FindSourceFiles(node='"."')
env.FindSourceFiles(node='"."')

Returns the list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree
starting at the optional argument node which defaults to the '"."'-node. It will then return all leaves of node.
These are all children which have no further children.

This function is a convenient method to select the contents of a Source Package.

Example:

Program('src/main_a.c')
Program('src/main_b.c')
Program('main_c.c')

returns ['main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
FindSourceFiles()

returns ['src/main_b.c', 'src/main_a.c']
FindSourceFiles('src')

As you can see build support files (SConstruct in the above example) will also be returned by this function.

Flatten(sequence)
env.Flatten(sequence)

Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elements in any sequence. This can be helpful for collecting the lists returned by
calls to Builders; other Builders will automatically flatten lists specified as input, but direct Python manipulation
of these lists does not.

Examples:

foo = Object('foo.c')
bar = Object('bar.c')

Because `foo' and `bar' are lists returned by the Object() Builder,
`objects' will be a list containing nested lists:

331

objects = ['f1.o', foo, 'f2.o', bar, 'f3.o']

Passing such a list to another Builder is all right because
the Builder will flatten the list automatically:
Program(source = objects)

If you need to manipulate the list directly using Python, you need to
call Flatten() yourself, or otherwise handle nested lists:
for object in Flatten(objects):
 print(str(object))

GetBuildFailures()
Returns a list of exceptions for the actions that failed while attempting to build targets. Each element in the returned
list is a BuildError object with the following attributes that record various aspects of the build failure:

.node The node that was being built when the build failure occurred.

.status The numeric exit status returned by the command or Python function that failed when trying to build
the specified Node.

.errstr The SCons error string describing the build failure. (This is often a generic message like "Error 2" to
indicate that an executed command exited with a status of 2.)

.filename The name of the file or directory that actually caused the failure. This may be different from the

.node attribute. For example, if an attempt to build a target named sub/dir/target fails because the sub/
dir directory could not be created, then the .node attribute will be sub/dir/target but the .filename
attribute will be sub/dir.

.executor The SCons Executor object for the target Node being built. This can be used to retrieve the
construction environment used for the failed action.

.action The actual SCons Action object that failed. This will be one specific action out of the possible list of
actions that would have been executed to build the target.

.command The actual expanded command that was executed and failed, after expansion of $TARGET,
$SOURCE, and other construction variables.

Note that the GetBuildFailures function will always return an empty list until any build failure has occurred,
which means that GetBuildFailures will always return an empty list while the SConscript files are being
read. Its primary intended use is for functions that will be executed before SCons exits by passing them to the
standard Python atexit.register() function. Example:

import atexit

def print_build_failures():
 from SCons.Script import GetBuildFailures
 for bf in GetBuildFailures():
 print("%s failed: %s" % (bf.node, bf.errstr))

atexit.register(print_build_failures)

GetBuildPath(file, [...])
env.GetBuildPath(file, [...])

Returns the scons path name (or names) for the specified file (or files). The specified file or files may be
scons Nodes or strings representing path names.

332

GetLaunchDir()
Returns the absolute path name of the directory from which scons was initially invoked. This can be useful when
using the -u, -U or -D options, which internally change to the directory in which the SConstruct file is found.

GetOption(name)
env.GetOption(name)

Query the value of settable options which may have been set on the command line, via option defaults, or by using
the SetOption function. The value of the option is returned in a type matching how the option was declared -
see the documentation of the corresponding command line option for information about each specific option.

name can be an entry from the following table, which shows the corresponding command line arguments that
could affect the value. name can be also be the destination variable name from a project-specific option added
using the AddOption function, as long as that addition has been processed prior to the GetOption call in the
SConscript files.

Query name Command-line options Notes

cache_debug --cache-debug

cache_disable --cache-disable, --no-
cache

cache_force --cache-force, --cache-
populate

cache_readonly --cache-readonly

cache_show --cache-show

clean -c, --clean, --remove

climb_up -D -U -u --up --search_up

config --config

debug --debug

directory -C, --directory

diskcheck --diskcheck

duplicate --duplicate

enable_virtualenv --enable-virtualenv

experimental --experimental since 4.2

file -f, --file, --makefile, --
sconstruct

hash_format --hash-format since 4.2

help -h, --help

ignore_errors -i, --ignore-errors

ignore_virtualenv --ignore-virtualenv

implicit_cache --implicit-cache

implicit_deps_changed --implicit-deps-changed

implicit_deps_unchanged --implicit-deps-
unchanged

include_dir -I, --include-dir

install_sandbox --install-sandbox Available only if the install tool
has been called

333

Query name Command-line options Notes

keep_going -k, --keep-going

max_drift --max-drift

md5_chunksize --hash-chunksize, --md5-
chunksize

--hash-chunksize since 4.2

no_exec -n, --no-exec, --just-
print, --dry-run, --recon

no_progress -Q

num_jobs -j, --jobs

package_type --package-type Available only if the packaging
tool has been called

profile_file --profile

question -q, --question

random --random

repository -Y, --repository, --srcdir

silent -s, --silent, --quiet

site_dir --site-dir, --no-site-dir

stack_size --stack-size

taskmastertrace_file --taskmastertrace

tree_printers --tree

warn --warn, --warning

GetSConsVersion()
Returns the current SCons version in the form of a Tuple[int, int, int], representing the major, minor, and revision
values respectively. Added in 4.8.0.

Glob(pattern, [ondisk=True, source=False, strings=False, exclude=None])
env.Glob(pattern, [ondisk=True, source=False, strings=False, exclude=None])

Returns a possibly empty list of Nodes (or strings) that match pathname specification pattern. pattern can
be absolute, top-relative, or (most commonly) relative to the directory of the current SConscript file. Glob
matches both files stored on disk and Nodes which SCons already knows about, even if any corresponding file is
not currently stored on disk. The evironment method form (env.Glob) performs string substition on pattern
and returns whatever matches the resulting expanded pattern. The results are sorted, unlike for the similar Python
glob.glob function, to ensure build order will be stable.

pattern can contain POSIX-style shell metacharacters for matching:

Pattern Meaning

* matches everything

? matches any single character

[seq] matches any character in seq (can be a list or a range).

[!seq] matches any character not in seq

For a literal match, wrap the metacharacter in brackets to escape the normal behavior. For example, '[?]'
matches the character '?'.

334

Filenames starting with a dot are specially handled - they can only be matched by patterns that start with a dot
(or have a dot immediately following a pathname separator character, or slash), they are not not matched by the
metacharacters. Metacharacter matches also do not span directory separators.

Glob understands repositories (see the Repository function) and source directories (see the VariantDir
function) and returns a Node (or string, if so configured) match in the local (SConscript) directory if a matching
Node is found anywhere in a corresponding repository or source directory.

If the optional ondisk argument evaluates false, the search for matches on disk is disabled, and only matches
from already-configured File or Dir Nodes are returned. The default is to return Nodes for matches on disk as well.

If the optional source argument evaluates true, and the local directory is a variant directory, then Glob returnes
Nodes from the corresponding source directory, rather than the local directory.

If the optional strings argument evaluates true, Glob returns matches as strings, rather than Nodes. The
returned strings will be relative to the local (SConscript) directory. (Note that while this may make it easier
to perform arbitrary manipulation of file names, it loses the context SCons would have in the Node, so if the
returned strings are passed to a different SConscript file, any Node translation there will be relative to that
SConscript directory, not to the original SConscript directory.)

The optional exclude argument may be set to a pattern or a list of patterns descibing files or directories to filter
out of the match list. Elements matching a least one specified pattern will be excluded. These patterns use the
same syntax as for pattern.

Examples:

Program("foo", Glob("*.c"))
Zip("/tmp/everything", Glob(".??*") + Glob("*"))
sources = Glob("*.cpp", exclude=["os_*_specific_*.cpp"]) \
 + Glob("os_%s_specific_*.cpp" % currentOS)

Help(text, append=False, local_only=False)
env.Help(text, append=False, local_only=False)

Adds text to the help message shown when scons is called with the -h or --help argument.

On the first call to Help, if append is False (the default), any existing help text is discarded. The default help
text is the help for the scons command itself plus help collected from any project-local AddOption calls. This is
the help printed if Help has never been called. If append is True, text is appended to the existing help text.
If local_only is also True (the default is False), the project-local help from AddOption calls is preserved
in the help message but the scons command help is not.

Subsequent calls to Help ignore the keyword arguments append and local_only and always append to the
existing help text.

Changed in 4.6.0: added local_only.

Ignore(target, dependency)
env.Ignore(target, dependency)

Ignores dependency when deciding if target needs to be rebuilt. target and dependency can each be
a single filename or Node or a list of filenames or Nodes.

Ignore can also be used to remove a target from the default build by specifying the directory the target will
be built in as target and the file you want to skip selecting for building as dependency. Note that this only
removes the target from the default target selection algorithm: if it is a dependency of another object being built
SCons still builds it normally. See the third and forth examples below.

335

Examples:

env.Ignore('foo', 'foo.c')
env.Ignore('bar', ['bar1.h', 'bar2.h'])
env.Ignore('.', 'foobar.obj')
env.Ignore('bar', 'bar/foobar.obj')

Import(vars...)
env.Import(vars...)

Imports variables into the scope of the current SConscript file. vars must be strings representing names of
variables which have been previously exported either by the Export function or by the exports argument
to the SConscript function. Variables exported by the SConscript call take precedence. Multiple variable
names can be passed to Import as separate arguments, as a list of strings, or as words in a space-separated string.
The wildcard "*" can be used to import all available variables.

If the imported variable is mutable, changes made locally will be reflected in the object the variable is bound to.
This allows subsidiary SConscript files to contribute to building up, for example, a construction environment.

Examples:

Import("env")
Import("env", "variable")
Import(["env", "variable"])
Import("*")

Literal(string)
env.Literal(string)

The specified string will be preserved as-is and not have construction variables expanded.

Local(targets)
env.Local(targets)

The specified targets will have copies made in the local tree, even if an already up-to-date copy exists in a
repository. Returns a list of the target Node or Nodes.

env.MergeFlags(arg, [unique])
Merges values from arg into construction variables in env. If arg is a dictionary, each key-value pair represents
a construction variable name and the corresponding flags to merge. If arg is not a dictionary, MergeFlags
attempts to convert it to one before the values are merged. env.ParseFlags is used for this, so values to
be converted are subject to the same limitations: ParseFlags has knowledge of which construction variables
certain flags should go to, but not all; and only for GCC and compatible compiler chains. arg must be a single
object, so to pass multiple strings, enclose them in a list.

If unique is true (the default), duplicate values are not retained. In case of duplication, any construction variable
names that end in PATH keep the left-most value so the path searcb order is not altered. All other construction
variables keep the right-most value. If unique is false, values are appended even if they are duplicates.

Examples:

Add an optimization flag to $CCFLAGS.
env.MergeFlags({'CCFLAGS': '-O3'})

Combine the flags returned from running pkg-config with an optimization

336

flag and merge the result into the construction variables.
env.MergeFlags(['!pkg-config gtk+-2.0 --cflags', '-O3'])

Combine an optimization flag with the flags returned from running pkg-config
for two distinct packages and merge into the construction variables.
env.MergeFlags(
 [
 '-O3',
 '!pkg-config gtk+-2.0 --cflags --libs',
 '!pkg-config libpng12 --cflags --libs',
]
)

NoCache(target, ...)
env.NoCache(target, ...)

Specifies a list of files which should not be cached whenever the CacheDir method has been activated. The
specified targets may be a list or an individual target.

Multiple files should be specified either as separate arguments to the NoCache method, or as a list. NoCache
will also accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File Nodes are cached.

Examples:

NoCache('foo.elf')
NoCache(env.Program('hello', 'hello.c'))

NoClean(target, ...)
env.NoClean(target, ...)

Specifies a list of files or directories which should not be removed whenever the targets (or their dependencies)
are specified with the -c command line option. The specified targets may be a list or an individual target. Multiple
calls to NoClean are legal, and prevent each specified target from being removed by calls to the -c option.

Multiple files or directories should be specified either as separate arguments to the NoClean method, or as a list.
NoClean will also accept the return value of any of the construction environment Builder methods.

Calling NoClean for a target overrides calling Clean for the same target, and any targets passed to both functions
will not be removed by the -c option.

Examples:

NoClean('foo.elf')
NoClean(env.Program('hello', 'hello.c'))

env.ParseConfig(command, [function, unique])
Updates the current construction environment with the values extracted from the output of running external
command, by passing it to a helper function. command may be a string or a list of strings representing the
command and its arguments. If function is omitted or None, env.MergeFlags is used. By default, duplicate
values are not added to any construction variables; you can specify unique=False to allow duplicate values
to be added.

command is executed using the SCons execution environment (that is, the construction variable $ENV in
the current construction environment). If command needs additional information to operate properly, that

337

needs to be set in the execution environment. For example, pkg-config may need a custom value set in the
PKG_CONFIG_PATH environment variable.

env.MergeFlags needs to understand the output produced by command in order to distribute it to
appropriate construction variables. env.MergeFlags uses a separate function to do that processing - see
env.ParseFlags for the details, including a a table of options and corresponding construction variables. To
provide alternative processing of the output of command, you can suppply a custom function, which must
accept three arguments: the construction environment to modify, a string argument containing the output from
running command, and the optional unique flag.

ParseDepends(filename, [must_exist, only_one])
env.ParseDepends(filename, [must_exist, only_one])

Parses the contents of filename as a list of dependencies in the style of Make or mkdep, and explicitly establishes
all of the listed dependencies.

By default, it is not an error if filename does not exist. The optional must_exist argument may be set to
True to have SCons raise an exception if the file does not exist, or is otherwise inaccessible.

The optional only_one argument may be set to True to have SCons raise an exception if the file contains
dependency information for more than one target. This can provide a small sanity check for files intended to be
generated by, for example, the gcc -M flag, which should typically only write dependency information for one
output file into a corresponding .d file.

filename and all of the files listed therein will be interpreted relative to the directory of the SConscript file
which calls the ParseDepends function.

env.ParseFlags(flags, ...)
Parses one or more strings containing typical command-line flags for GCC-style tool chains and returns a
dictionary with the flag values separated into the appropriate SCons construction variables. Intended as a
companion to the env.MergeFlags method, but allows for the values in the returned dictionary to be modified,
if necessary, before merging them into the construction environment. (Note that env.MergeFlags will call
this method if its argument is not a dictionary, so it is usually not necessary to call env.ParseFlags directly
unless you want to manipulate the values.)

If the first character in any string is an exclamation mark (!), the rest of the string is executed as a command,
and the output from the command is parsed as GCC tool chain command-line flags and added to the resulting
dictionary. This can be used to call a *-config command typical of the POSIX programming environment
(for example, pkg-config). Note that such a command is executed using the SCons execution environment; if the
command needs additional information, that information needs to be explicitly provided. See ParseConfig
for more details.

Flag values are translated according to the prefix found, and added to the following construction variables:

-arch CCFLAGS, LINKFLAGS
-D CPPDEFINES
-framework FRAMEWORKS
-frameworkdir= FRAMEWORKPATH
-fmerge-all-constants CCFLAGS, LINKFLAGS
-fopenmp CCFLAGS, LINKFLAGS
-fsanitize CCFLAGS, LINKFLAGS
-include CCFLAGS
-imacros CCFLAGS
-isysroot CCFLAGS, LINKFLAGS
-isystem CCFLAGS

338

-iquote CCFLAGS
-idirafter CCFLAGS
-I CPPPATH
-l LIBS
-L LIBPATH
-mno-cygwin CCFLAGS, LINKFLAGS
-mwindows LINKFLAGS
-openmp CCFLAGS, LINKFLAGS
-pthread CCFLAGS, LINKFLAGS
-std= CFLAGS
-stdlib= CXXFLAGS
-Wa, ASFLAGS, CCFLAGS
-Wl,-rpath= RPATH
-Wl,-R, RPATH
-Wl,-R RPATH
-Wl, LINKFLAGS
-Wp, CPPFLAGS
- CCFLAGS
+ CCFLAGS, LINKFLAGS

Any other strings not associated with options are assumed to be the names of libraries and added to the $LIBS
construction variable.

Examples (all of which produce the same result):

dict = env.ParseFlags('-O2 -Dfoo -Dbar=1')
dict = env.ParseFlags('-O2', '-Dfoo', '-Dbar=1')
dict = env.ParseFlags(['-O2', '-Dfoo -Dbar=1'])
dict = env.ParseFlags('-O2', '!echo -Dfoo -Dbar=1')

Platform(plat)
env.Platform(plat)

When called as a global function, returns a callable platform object selected by plat (defaults to the detected
platform for the current system) that can be used to initialize a construction environment by passing it as the
platform keyword argument to the Environment function.

Example:

env = Environment(platform=Platform('win32'))

When called as a method of an environment, calls the platform object indicated by plat to update that
environment.

env.Platform('posix')

See the manpage section "Construction Environments" for more details.

Precious(target, ...)
env.Precious(target, ...)

Marks target as precious so it is not deleted before it is rebuilt. Normally SCons deletes a target before building
it. Multiple targets can be passed in a single call, and may be strings and/or nodes. Returns a list of the affected
target nodes.

339

env.Prepend(key=val, [...])
Prepend values to construction variables in the current construction environment, Works like env.Append (see
for details), except that values are added to the front, rather than the end, of any existing value of the construction
variable

Example:

env.Prepend(CCFLAGS='-g ', FOO=['foo.yyy'])

See also env.Append, env.AppendUnique and env.PrependUnique.

env.PrependENVPath(name, newpath, [envname, sep, delete_existing=True])
Prepend path elements specified by newpath to the given search path string or list name in mapping envname
in the construction environment. Supplying envname is optional: the default is the execution environment $ENV.
Optional sep is used as the search path separator, the default is the platform's separator (os.pathsep). A path
element will only appear once. Any duplicates in newpath are dropped, keeping the first appearing (to preserve
path order). If delete_existing is False any addition duplicating an existing path element is ignored;
if delete_existing is True (the default) the existing value will be dropped and the path element will be
inserted at the beginning. To help maintain uniqueness all paths are normalized (using os.path.normpath
and os.path.normcase).

Example:

print('before:', env['ENV']['INCLUDE'])
include_path = '/foo/bar:/foo'
env.PrependENVPath('INCLUDE', include_path)
print('after:', env['ENV']['INCLUDE'])

Yields:

before: /biz:/foo
after: /foo/bar:/foo:/biz

See also env.AppendENVPath.

env.PrependUnique(key=val, [...], [delete_existing=False])
Prepend values to construction variables in the current construction environment, maintaining uniqueness. Works
like env.Append, except that values are added to the front, rather than the end, of the construction variable,
and values that would become duplicates are not added. If delete_existing is set to a true value, then for
any duplicate, the existing instance of val is first removed, then val is inserted, having the effect of moving
it to the front.

Example:

env.PrependUnique(CCFLAGS='-g', FOO=['foo.yyy'])

See also env.Append, env.AppendUnique and env.Prepend.

Progress(callable, [interval])
Progress(string, [interval, file, overwrite])
Progress(list_of_strings, [interval, file, overwrite])

Allows SCons to show progress made during the build by displaying a string or calling a function while evaluating
Nodes (e.g. files).

340

If the first specified argument is a Python callable (a function or an object that has a __call__ method), the
function will be called once every interval times a Node is evaluated (default 1). The callable will be passed the
evaluated Node as its only argument. (For future compatibility, it's a good idea to also add *args and **kwargs
as arguments to your function or method signatures. This will prevent the code from breaking if SCons ever
changes the interface to call the function with additional arguments in the future.)

An example of a simple custom progress function that prints a string containing the Node name every 10 Nodes:

def my_progress_function(node, *args, **kwargs):
 print('Evaluating node %s!' % node)
Progress(my_progress_function, interval=10)

A more complicated example of a custom progress display object that prints a string containing a count every 100
evaluated Nodes. Note the use of \r (a carriage return) at the end so that the string will overwrite itself on a display:

import sys
class ProgressCounter(object):
 count = 0
 def __call__(self, node, *args, **kw):
 self.count += 100
 sys.stderr.write('Evaluated %s nodes\r' % self.count)

Progress(ProgressCounter(), interval=100)

If the first argument to Progress is a string or list of strings, it is taken as text to be displayed every interval
evaluated Nodes. If the first argument is a list of strings, then each string in the list will be displayed in rotating
fashion every interval evaluated Nodes.

The default is to print the string on standard output. An alternate output stream may be specified with the file
keyword argument, which the caller must pass already opened.

The following will print a series of dots on the error output, one dot for every 100 evaluated Nodes:

import sys
Progress('.', interval=100, file=sys.stderr)

If the string contains the verbatim substring $TARGET;, it will be replaced with the Node. Note that, for
performance reasons, this is not a regular SCons variable substition, so you can not use other variables or use
curly braces. The following example will print the name of every evaluated Node, using a carriage return) (\r)
to cause each line to overwritten by the next line, and the overwrite keyword argument (default False) to
make sure the previously-printed file name is overwritten with blank spaces:

import sys
Progress('$TARGET\r', overwrite=True)

A list of strings can be used to implement a "spinner" on the user's screen as follows, changing every five evaluated
Nodes:

Progress(['-\r', '\\\r', '|\r', '/\r'], interval=5)

341

Pseudo(target, ...)
env.Pseudo(target, ...)

Marks target as a pseudo target, not representing the production of any physical target file. If any pseudo
target does exist, SCons will abort the build with an error. Multiple targets can be passed in a single call, and
may be strings and/or Nodes. Returns a list of the affected target nodes.

Pseudo may be useful in conjuction with a builder call (such as Command) which does not create a physical
target, and the behavior if the target accidentally existed would be incorrect. This is similar in concept to the GNU
make .PHONY target. SCons also provides a powerful target alias capability (see Alias) which may provide
more flexibility in many situations when defining target names that are not directly built.

PyPackageDir(modulename)
env.PyPackageDir(modulename)

Finds the location of modulename, which can be a string or a sequence of strings, each representing the name
of a Python module. Construction variables are expanded in modulename. Returns a Directory Node (see Dir),
or a list of Directory Nodes if modulename is a sequence. None is returned for any module not found.

When a Tool module which is installed as a Python module is used, you need to specify a toolpath
argument to Tool, Environment or Clone, as tools outside the standard project locations (site_scons/
site_tools) will not be found otherwise. Using PyPackageDir allows this path to be discovered at runtime
instead of hardcoding the path.

Example:

env = Environment(
 tools=["default", "ExampleTool"],
 toolpath=[PyPackageDir("example_tool")]
)

env.Replace(key=val, [...])
Replaces construction variables in the Environment with the specified keyword arguments.

Example:

env.Replace(CCFLAGS='-g', FOO='foo.xxx')

Repository(directory)
env.Repository(directory)

Specifies that directory is a repository to be searched for files. Multiple calls to Repository are legal, and
each one adds to the list of repositories that will be searched.

To scons, a repository is a copy of the source tree, from the top-level directory on down, which may contain both
source files and derived files that can be used to build targets in the local source tree. The canonical example would
be an official source tree maintained by an integrator. If the repository contains derived files, then the derived files
should have been built using scons, so that the repository contains the necessary signature information to allow
scons to figure out when it is appropriate to use the repository copy of a derived file, instead of building one locally.

Note that if an up-to-date derived file already exists in a repository, scons will not make a copy in the local
directory tree. In order to guarantee that a local copy will be made, use the Local method.

Requires(target, prerequisite)
env.Requires(target, prerequisite)

Specifies an order-only relationship between target and prerequisite. The prerequisites will be (re)built,
if necessary, before the target file(s), but the target file(s) do not actually depend on the prerequisites and will not

342

be rebuilt simply because the prerequisite file(s) change. target and prerequisite may each be a string
or Node, or a list of strings or Nodes. If there are multiple target values, the prerequisite(s) are added to each
one. Returns a list of the affected target nodes.

Example:

env.Requires('foo', 'file-that-must-be-built-before-foo')

Return([vars..., stop=True])
Return to the calling SConscript, optionally returning the values of variables named in vars. Multiple strings
contaning variable names may be passed to Return. A string containing white space is split into individual
variable names. Returns the value if one variable is specified, else returns a tuple of values. Returns an empty
tuple if vars is omitted.

By default Return stops processing the current SConscript and returns immediately. The optional stop keyword
argument may be set to a false value to continue processing the rest of the SConscript file after the Return
call (this was the default behavior prior to SCons 0.98.) However, the values returned are still the values of the
variables in the named vars at the point Return was called.

Examples:

Returns no values (evaluates False)
Return()

Returns the value of the 'foo' Python variable.
Return("foo")

Returns the values of the Python variables 'foo' and 'bar'.
Return("foo", "bar")

Returns the values of Python variables 'val1' and 'val2'.
Return('val1 val2')

Scanner(function, [name, argument, skeys, path_function, node_class,
node_factory, scan_check, recursive])
env.Scanner(function, [name, argument, skeys, path_function, node_class,
node_factory, scan_check, recursive])

Creates a Scanner object for the specified function. See manpage section "Scanner Objects" for a complete
explanation of the arguments and behavior.

SConscript(scriptnames, [exports, variant_dir, duplicate, must_exist])
env.SConscript(scriptnames, [exports, variant_dir, duplicate, must_exist])
SConscript(dirs=subdirs, [name=scriptname, exports, variant_dir, duplicate,
must_exist])
env.SConscript(dirs=subdirs, [name=scriptname, exports, variant_dir, duplicate,
must_exist])

Executes subsidiary SConscript (build configuration) file(s). There are two ways to call the SConscript
function.

The first calling style is to supply one or more SConscript file names as the first positional argument, which can
be a string or a list of strings. If there is a second positional argument, it is treated as if the exports keyword
argument had been given (see below). Examples:

343

SConscript('SConscript') # run SConscript in the current directory
SConscript('src/SConscript') # run SConscript in the src directory
SConscript(['src/SConscript', 'doc/SConscript'])
SConscript(Split('src/SConscript doc/SConscript'))
config = SConscript('MyConfig.py')

The second calling style is to omit the positional argument naming the script and instead specify directory names
using the dirs keyword argument. The value can be a string or list of strings. In this case, scons will execute
a subsidiary configuration file named SConscript (by default) in each of the specified directories. You may
specify a name other than SConscript by supplying an optional name=scriptname keyword argument. The
first three examples below have the same effect as the first three examples above:

SConscript(dirs='.') # run SConscript in the current directory
SConscript(dirs='src') # run SConscript in the src directory
SConscript(dirs=['src', 'doc'])
SConscript(dirs=['sub1', 'sub2'], name='MySConscript')

The optional exports keyword argument specifies variables to make available for use by the called SConscripts,
which are evaluated in an isolated context and otherwise do not have access to local variables from the calling
SConscript. The value may be a string or list of strings representing variable names, or a dictionary mapping local
names to the names they can be imported by. For the first (scriptnames) calling style, a second positional argument
will also be interpreted as exports; the second (directory) calling style accepts no positional arguments and
must use the keyword form. These variables are locally exported only to the called SConscript file(s), and take
precedence over any same-named variables in the global pool managed by the Export function. The subsidiary
SConscript files must use the Import function to import the variables into their local scope. Examples:

foo = SConscript('sub/SConscript', exports='env')
SConscript('dir/SConscript', exports=['env', 'variable'])
SConscript(dirs='subdir', exports='env variable')
SConscript(dirs=['one', 'two', 'three'], exports='shared_info')

If the optional variant_dir argument is present, it causes an effect equivalent to the VariantDir function,
but in effect only within the scope of the SConscript call. The variant_dir argument is interpreted relative
to the directory of the calling SConscript file. The source directory is the directory in which the called SConscript
file resides and the SConscript file is evaluated as if it were in the variant_dir directory. Thus:

SConscript('src/SConscript', variant_dir='build')

is equivalent to:

VariantDir('build', 'src')
SConscript('build/SConscript')

If the sources are in the same directory as the SConstruct,

SConscript('SConscript', variant_dir='build')

is equivalent to:

VariantDir('build', '.')
SConscript('build/SConscript')

344

The optional duplicate argument is interpreted as for VariantDir. If the variant_dir argument is
omitted, the duplicate argument is ignored. See the description of VariantDir for additional details and
restrictions.

If the optional must_exist is True (the default), an exception is raised if a requested SConscript file is not
found. To allow missing scripts to be silently ignored (the default behavior prior to SCons version 3.1), pass
must_exist=False in the SConscript call.

Changed in 4.6.0: must_exist now defaults to True.

Here are some composite examples:

collect the configuration information and use it to build src and doc
shared_info = SConscript('MyConfig.py')
SConscript('src/SConscript', exports='shared_info')
SConscript('doc/SConscript', exports='shared_info')

build debugging and production versions. SConscript
can use Dir('.').path to determine variant.
SConscript('SConscript', variant_dir='debug', duplicate=0)
SConscript('SConscript', variant_dir='prod', duplicate=0)

build debugging and production versions. SConscript
is passed flags to use.
opts = { 'CPPDEFINES' : ['DEBUG'], 'CCFLAGS' : '-pgdb' }
SConscript('SConscript', variant_dir='debug', duplicate=0, exports=opts)
opts = { 'CPPDEFINES' : ['NODEBUG'], 'CCFLAGS' : '-O' }
SConscript('SConscript', variant_dir='prod', duplicate=0, exports=opts)

build common documentation and compile for different architectures
SConscript('doc/SConscript', variant_dir='build/doc', duplicate=0)
SConscript('src/SConscript', variant_dir='build/x86', duplicate=0)
SConscript('src/SConscript', variant_dir='build/ppc', duplicate=0)

SConscript returns the values of any variables named by the executed SConscript file(s) in arguments to the
Return function. If a single SConscript call causes multiple scripts to be executed, the return value is a tuple
containing the returns of each of the scripts. If an executed script does not explicitly call Return, it returns None.

SConscriptChdir(value)
By default, scons changes its working directory to the directory in which each subsidiary SConscript file lives
while reading and processing that script. This behavior may be disabled by specifying an argument which evaluates
false, in which case scons will stay in the top-level directory while reading all SConscript files. (This may be
necessary when building from repositories, when all the directories in which SConscript files may be found don't
necessarily exist locally.) You may enable and disable this ability by calling SConscriptChdir multiple times.

Example:

SConscriptChdir(False)
SConscript('foo/SConscript') # will not chdir to foo
SConscriptChdir(True)
SConscript('bar/SConscript') # will chdir to bar

345

SConsignFile([name, dbm_module])
env.SConsignFile([name, dbm_module])

Specify where to store the SCons file signature database, and which database format to use. This may be useful
to specify alternate database files and/or file locations for different types of builds.

The optional name argument is the base name of the database file(s). If not an absolute path name, these are
placed relative to the directory containing the top-level SConstruct file. The default is .sconsign. The
actual database file(s) stored on disk may have an appropriate suffix appended by the chosen dbm_module

The optional dbm_module argument specifies which Python database module to use for reading/writing the file.
The module must be imported first; then the imported module name is passed as the argument. The default is a
custom SCons.dblite module that uses pickled Python data structures, which works on all Python versions.
See documentation of the Python dbm module for other available types.

If called with no arguments, the database will default to .sconsign.dblite in the top directory of the project,
which is also the default if if SConsignFile is not called.

The setting is global, so the only difference between the global function and the environment method form is
variable expansion on name. There should only be one active call to this function/method in a given build setup.

If name is set to None, scons will store file signatures in a separate .sconsign file in each directory, not in a
single combined database file. This is a backwards-compatibility meaure to support what was the default behavior
prior to SCons 0.97 (i.e. before 2008). Use of this mode is discouraged and may be deprecated in a future SCons
release.

Examples:

Explicitly stores signatures in ".sconsign.dblite"
in the top-level SConstruct directory (the default behavior).
SConsignFile()

Stores signatures in the file "etc/scons-signatures"
relative to the top-level SConstruct directory.
SCons will add a database suffix to this name.
SConsignFile("etc/scons-signatures")

Stores signatures in the specified absolute file name.
SCons will add a database suffix to this name.
SConsignFile("/home/me/SCons/signatures")

Stores signatures in a separate .sconsign file
in each directory.
SConsignFile(None)

Stores signatures in a GNU dbm format .sconsign file
import dbm.gnu
SConsignFile(dbm_module=dbm.gnu)

env.SetDefault(key=val, [...])
Sets construction variables to default values specified with the keyword arguments if (and only if) the variables
are not already set. The following statements are equivalent:

env.SetDefault(FOO='foo')

346

if 'FOO' not in env:
 env['FOO'] = 'foo'

SetOption(name, value)
env.SetOption(name, value)

Sets scons option variable name to value. These options are all also settable via command-line options but the
variable name may differ from the command-line option name - see the table for correspondences. A value set
via command-line option will take precedence over one set with SetOption, which allows setting a project
default in the scripts and temporarily overriding it via command line. SetOption calls can also be placed in
the site_init.py file.

See the documentation in the manpage for the corresponding command line option for information about each
specific option. The value parameter is mandatory, for option values which are boolean in nature (that is, the
command line option does not take an argument) use a value which evaluates to true (e.g. True, 1) or false
(e.g. False, 0).

Options which affect the reading and processing of SConscript files are not settable using SetOption since
those files must be read in order to find the SetOption call in the first place.

For project-specific options (sometimes called local options) added via an AddOption call, SetOption
is available only after the AddOption call has completed successfully, and only if that call included the
settable=True argument.

The settable variables with their associated command-line options are:

Settable name Command-line options Notes

clean -c, --clean, --remove

diskcheck --diskcheck

duplicate --duplicate

experimental --experimental since 4.2

hash_chunksize --hash-chunksize Actually sets md5_chunksize.
since 4.2

hash_format --hash-format since 4.2

help -h, --help

implicit_cache --implicit-cache

implicit_deps_changed --implicit-deps-changed Also sets implicit_cache.
(settable since 4.2)

implicit_deps_unchanged --implicit-deps-
unchanged

Also sets implicit_cache.
(settable since 4.2)

max_drift --max-drift

md5_chunksize --md5-chunksize

no_exec -n, --no-exec, --just-
print, --dry-run, --recon

no_progress -Q See a

num_jobs -j, --jobs

random --random

silent -s, --silent, --quiet

stack_size --stack-size

347

Settable name Command-line options Notes

warn --warn
aIf no_progress is set via SetOption in an SConscript file (but not if set in a site_init.py file) there will still be an initial status
message about reading SConscript files since SCons has to start reading them before it can see the SetOption.

Example:

SetOption('max_drift', 0)

SideEffect(side_effect, target)
env.SideEffect(side_effect, target)

Declares side_effect as a side effect of building target. Both side_effect and target can be a list,
a file name, or a node. A side effect is a target file that is created or updated as a side effect of building other
targets. For example, a Windows PDB file is created as a side effect of building the .obj files for a static library,
and various log files are created updated as side effects of various TeX commands. If a target is a side effect of
multiple build commands, scons will ensure that only one set of commands is executed at a time. Consequently,
you only need to use this method for side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the side_effect target
is not automatically removed when the target is removed by the -c option. (Note, however, that the
side_effect might be removed as part of cleaning the directory in which it lives.) If you want to make sure
the side_effect is cleaned whenever a specific target is cleaned, you must specify this explicitly with the
Clean or env.Clean function.

This function returns the list of side effect Node objects that were successfully added. If the list of side effects
contained any side effects that had already been added, they are not added and included in the returned list.

Split(arg)
env.Split(arg)

If arg is a string, splits on whitespace and returns a list of strings without whitespace. This mode is the most
common case, and can be used to split a list of filenames (for example) rather than having to type them as a list of
individually quoted words. If arg is a list or tuple returns the list or tuple unchanged. If arg is any other type of
object, returns a list containing just the object. These non-string cases do not actually do any spliting, but allow
an argument variable to be passed to Split without having to first check its type.

Example:

files = Split("f1.c f2.c f3.c")
files = env.Split("f4.c f5.c f6.c")
files = Split("""
 f7.c
 f8.c
 f9.c
""")

env.subst(input, [raw, target, source, conv])
Performs construction variable interpolation (substitution) on input, which can be a string or a sequence.
Substitutable elements take the form ${expression}, although if there is no ambiguity in recognizing the
element, the braces can be omitted. A literal $ can be entered by using $$.

By default, leading or trailing white space will be removed from the result, and all sequences of white space will
be compressed to a single space character. Additionally, any $(and $) character sequences will be stripped from
the returned string, The optional raw argument may be set to 1 if you want to preserve white space and $(-$)

348

sequences. The raw argument may be set to 2 if you want to additionally discard all characters between any $(
and $) pairs (as is done for signature calculation).

If input is a sequence (list or tuple), the individual elements of the sequence will be expanded, and the results
will be returned as a list.

The optional target and source keyword arguments must be set to lists of target and source nodes,
respectively, if you want the $TARGET, $TARGETS, $SOURCE and $SOURCES to be available for expansion.
This is usually necessary if you are calling env.subst from within a Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default. The optional
conv argument may specify a conversion function that will be used in place of the default. For example, if you
want Python objects (including SCons Nodes) to be returned as Python objects, you can use a Python lambda
expression to pass in an unnamed function that simply returns its unconverted argument.

Example:

print(env.subst("The C compiler is: $CC"))

def compile(target, source, env):
 sourceDir = env.subst(
 "${SOURCE.srcdir}",
 target=target,
 source=source
)

source_nodes = env.subst('$EXPAND_TO_NODELIST', conv=lambda x: x)

Tag(node, tags)
Annotates file or directory Nodes with information about how the Package Builder should package those files
or directories. All Node-level tags are optional.

Examples:

makes sure the built library will be installed with 644 file access mode
Tag(Library('lib.c'), UNIX_ATTR="0o644")

marks file2.txt to be a documentation file
Tag('file2.txt', DOC)

Tool(name, [toolpath, key=value, ...])
env.Tool(name, [toolpath, key=value, ...])

Locates the tool specification module name and returns a callable tool object for that tool. When the environment
method (env.Tool) form is used, the tool object is automatically called before the method returns to update
env, and name is appended to the $TOOLS construction variable in that environment. When the global function
Tool form is used, the tool object is constructed but not called, as it lacks the context of an environment to update,
and the returned object needs to be used to arrange for the call.

The tool module is searched for in the tool search paths (see the Tools section in the manual page for details) and
in any paths specified by the optional toolpath parameter, which must be a list of strings. If toolpath is
omitted, the toolpath supplied when the environment was created, if any, is used.

Any remaining keyword arguments are saved in the tool object, and will be passed to the tool module's generate
function when the tool object is actually called. The generate function can update the construction environment

349

with construction variables and arrange any other initialization needed to use the mechanisms that tool describes,
and can use these extra arguments to help guide its actions.

Changed in version 4.2: env.Tool now returns the tool object, previously it did not return (i.e. returned None).

Examples:

env.Tool('gcc')
env.Tool('opengl', toolpath=['build/tools'])

The returned tool object can be passed to an Environment or Clone call as part of the tools keyword
argument, in which case the tool is applied to the environment being constructed, or it can be called directly, in
which case a construction environment to update must be passed as the argument. Either approach will also update
the $TOOLS construction variable.

Examples:

env = Environment(tools=[Tool('msvc')])

env = Environment()
msvctool = Tool('msvc')
msvctool(env) # adds 'msvc' to the TOOLS variable
gltool = Tool('opengl', toolpath = ['tools'])
gltool(env) # adds 'opengl' to the TOOLS variable

ValidateOptions([throw_exception=False])
Check that all the options specified on the command line are either SCons built-in options or defined via calls to
AddOption. SCons will eventually fail on unknown options anyway, but calling this function allows the build
to "fail fast" before executing expensive logic later in the build.

This function should only be called after the last AddOption call in your SConscript logic. Be aware that
some tools call AddOption, if you are getting error messages for arguments that they add, you will need to
ensure that those tools are loaded before calling ValidateOptions.

If there are any unknown command line options, ValidateOptions prints an error message and exits
with an error exit status. If the optional throw_exception argument is True (default is False), a
SConsBadOptionError is raised, giving an opportunity for the SConscript logic to catch that exception
and handle invalid options appropriately. Note that this exception name needs to be imported (see the example
below).

A common build problem is typos (or thinkos) - a user enters an option that is just a little off the expected value,
or perhaps a different word with a similar meaning. It may be useful to abort the build before going too far down
the wrong path. For example:

$ scons --compilers=mingw # the correct flag is --compiler

Here SCons could go off and run a bunch of configure steps with the default value of --compiler, since
the incorrect command line did not actually supply a value to it, costing developer time to track down why the
configure logic made the "wrong" choices. This example shows catching this:

from SCons.Script.SConsOptions import SConsBadOptionError

350

AddOption(
 '--compiler',
 dest='compiler',
 action='store',
 default='gcc',
 type='string',
)

... other SConscript logic ...

try:
 ValidateOptions(throw_exception=True)
except SConsBadOptionError as e:
 print(f"ValidateOptions detects a fail: ", e.opt_str)
 Exit(3)

New in version 4.5.0

Value(value, [built_value], [name])
env.Value(value, [built_value], [name])

Returns a Node object representing the specified Python value. Value Nodes can be used as dependencies of
targets. If the string representation of the Value Node changes between SCons runs, it is considered out of date
and any targets depending it will be rebuilt. Since Value Nodes have no filesystem representation, timestamps are
not used; the timestamp deciders perform the same content-based up to date check.

The optional built_value argument can be specified when the Value Node is created to indicate the Node
should already be considered "built."

The optional name parameter can be provided as an alternative name for the resulting Value node; this is advised
if the value parameter cannot be converted to a string.

Value Nodes have a write method that can be used to "build" a Value Node by setting a new value. The
corresponding read method returns the built value of the Node.

Changed in version 4.0: the name parameter was added.

Examples:

env = Environment()

def create(target, source, env):
 """Action function to create a file from a Value.

 Writes 'prefix=$SOURCE' into the file name given as $TARGET.
 """
 with open(str(target[0]), 'wb') as f:
 f.write(b'prefix=' + source[0].get_contents() + b'\n')

Fetch the prefix= argument, if any, from the command line.
Use /usr/local as the default.
prefix = ARGUMENTS.get('prefix', '/usr/local')

351

Attach builder named Config to the construction environment
using the 'create' action function above.
env['BUILDERS']['Config'] = Builder(action=create)
env.Config(target='package-config', source=Value(prefix))

def build_value(target, source, env):
 """Action function to "build" a Value.

 Writes contents of $SOURCE into $TARGET, thus updating if it existed.
 """
 target[0].write(source[0].get_contents())

output = env.Value('before')
input = env.Value('after')

Attach a builder named UpdateValue to the construction environment
using the 'build_value' action function above.
env['BUILDERS']['UpdateValue'] = Builder(action=build_value)
env.UpdateValue(target=Value(output), source=Value(input))

VariantDir(variant_dir, src_dir, [duplicate])
env.VariantDir(variant_dir, src_dir, [duplicate])

Sets up a mapping to define a variant build directory in variant_dir. src_dir must not be underneath
variant_dir. A VariantDir mapping is global, even if called using the env.VariantDir form.
VariantDir can be called multiple times with the same src_dir to set up multiple variant builds with different
options.

Note if variant_dir is not under the project top directory, target selection rules will not pick targets in the
variant directory unless they are explicitly specified.

When files in variant_dir are referenced, SCons backfills as needed with files from src_dir to create a
complete build directory. By default, SCons physically duplicates the source files, SConscript files, and directory
structure as needed into the variant directory. Thus, a build performed in the variant directory is guaranteed to be
identical to a build performed in the source directory even if intermediate source files are generated during the
build, or if preprocessors or other scanners search for included files using paths relative to the source file, or if
individual compilers or other invoked tools are hard-coded to put derived files in the same directory as source
files. Only the files SCons calculates are needed for the build are duplicated into variant_dir. If possible on
the platform, the duplication is performed by linking rather than copying. This behavior is affected by the --
duplicate command-line option.

Duplicating the source files may be disabled by setting the duplicate argument to False. This will cause
SCons to invoke Builders using the path names of source files in src_dir and the path names of derived
files within variant_dir. This is more efficient than duplicating, and is safe for most builds; revert to
duplicate=True if it causes problems.

VariantDir works most naturally when used with a subsidiary SConscript file. The subsidiary SConscript
file must be called as if it were in variant_dir, regardless of the value of duplicate. When calling
an SConscript file, you can use the exports keyword argument to pass parameters (individually or as an
appropriately set up environment) so the SConscript can pick up the right settings for that variant build. The
SConscript must Import these to use them. Example:

env1 = Environment(...settings for variant1...)
env2 = Environment(...settings for variant2...)

352

run src/SConscript in two variant directories
VariantDir('build/variant1', 'src')
SConscript('build/variant1/SConscript', exports={"env": env1})
VariantDir('build/variant2', 'src')
SConscript('build/variant2/SConscript', exports={"env": env2})

See also the SConscript function for another way to specify a variant directory in conjunction with calling
a subsidiary SConscript file.

More examples:

use names in the build directory, not the source directory
VariantDir('build', 'src', duplicate=0)
Program('build/prog', 'build/source.c')

this builds both the source and docs in a separate subtree
VariantDir('build', '.', duplicate=0)
SConscript(dirs=['build/src','build/doc'])

same as previous example, but only uses SConscript
SConscript(dirs='src', variant_dir='build/src', duplicate=0)
SConscript(dirs='doc', variant_dir='build/doc', duplicate=0)

WhereIs(program, [path, pathext, reject])
env.WhereIs(program, [path, pathext, reject])

Searches for the specified executable program, returning the full path to the program or None.

When called as a construction environment method, searches the paths in the path keyword argument, or if
None (the default) the paths listed in the construction environment (env['ENV']['PATH']). The external
environment's path list (os.environ['PATH']) is used as a fallback if the key env['ENV']['PATH']
does not exist.

On Windows systems, searches for executable programs with any of the file extensions listed in
the pathext keyword argument, or if None (the default) the pathname extensions listed in the
construction environment (env['ENV']['PATHEXT']). The external environment's pathname extensions list
(os.environ['PATHEXT']) is used as a fallback if the key env['ENV']['PATHEXT'] does not exist.

When called as a global function, uses the external environment's path os.environ['PATH'] and path
extensions os.environ['PATHEXT'], respectively, if path and pathext are None.

Will not select any path name or names in the optional reject list.

353

Appendix E. Handling Common Tasks
There is a common set of simple tasks that many build configurations rely on as they become more complex. Most
build tools have special purpose constructs for performing these tasks, but since SConscript files are Python scripts,
you can use more flexible built-in Python services to perform these tasks. This appendix lists a number of these tasks
and how to implement them in Python and SCons.

Example E.1. Wildcard globbing to create a list of filenames

files = Glob(wildcard)

Example E.2. Filename extension substitution

import os.path
filename = os.path.splitext(filename)[0]+extension

Example E.3. Appending a path prefix to a list of filenames

import os.path
filenames = [os.path.join(prefix, x) for x in filenames]

Example E.4. Substituting a path prefix with another one

if filename.find(old_prefix) == 0:
 filename = filename.replace(old_prefix, new_prefix)

Example E.5. Filtering a filename list to exclude/retain only a specific set of extensions

import os.path
filenames = [x for x in filenames if os.path.splitext(x)[1] in extensions]

Example E.6. The "backtick function": run a shell command and capture the output

import subprocess
output = subprocess.check_output(command)

354

Example E.7. Generating source code: how code can be generated and used by SCons

The Copy builders here could be any arbitrary shell or python function that produces one or more files. This example
shows how to create those files and use them in SCons.

SConstruct
env = Environment()
env.Append(CPPPATH = "#")

Header example
env.Append(BUILDERS =
 {'Copy1' : Builder(action = 'cat < $SOURCE > $TARGET',
 suffix='.h', src_suffix='.bar')})
env.Copy1('test.bar') # produces test.h from test.bar.
env.Program('app','main.cpp') # indirectly depends on test.bar

Source file example
env.Append(BUILDERS =
 {'Copy2' : Builder(action = 'cat < $SOURCE > $TARGET',
 suffix='.cpp', src_suffix='.bar2')})
foo = env.Copy2('foo.bar2') # produces foo.cpp from foo.bar2.
env.Program('app2',['main2.cpp'] + foo) # compiles main2.cpp and foo.cpp into app2.

Where main.cpp looks like this:

#include "test.h"

produces this:

% scons -Q
cat < test.bar > test.h
cc -o app main.cpp
cat < foo.bar2 > foo.cpp
cc -o app2 main2.cpp foo.cpp

