quadratic_assignment(method=’faq’)#
- scipy.optimize.quadratic_assignment(A, B, method='faq', options=None)
- Solve the quadratic assignment problem (approximately). - This function solves the Quadratic Assignment Problem (QAP) and the Graph Matching Problem (GMP) using the Fast Approximate QAP Algorithm (FAQ) [1]. - Quadratic assignment solves problems of the following form: \[\begin{split}\min_P & \ {\ \text{trace}(A^T P B P^T)}\\ \mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\\end{split}\]- where \(\mathcal{P}\) is the set of all permutation matrices, and \(A\) and \(B\) are square matrices. - Graph matching tries to maximize the same objective function. This algorithm can be thought of as finding the alignment of the nodes of two graphs that minimizes the number of induced edge disagreements, or, in the case of weighted graphs, the sum of squared edge weight differences. - Note that the quadratic assignment problem is NP-hard. The results given here are approximations and are not guaranteed to be optimal. - Parameters:
- A2-D array, square
- The square matrix \(A\) in the objective function above. 
- B2-D array, square
- The square matrix \(B\) in the objective function above. 
- methodstr in {‘faq’, ‘2opt’} (default: ‘faq’)
- The algorithm used to solve the problem. This is the method-specific documentation for ‘faq’. ‘2opt’ is also available. 
 
- Returns:
- resOptimizeResult
- OptimizeResultcontaining the following fields.- col_ind1-D array
- Column indices corresponding to the best permutation found of the nodes of B. 
- funfloat
- The objective value of the solution. 
- nitint
- The number of Frank-Wolfe iterations performed. 
 
 
 - See also - For documentation for the rest of the parameters, see - scipy.optimize.quadratic_assignment- Options:
- ——-
- maximizebool (default: False)
- Maximizes the objective function if - True.
- partial_match2-D array of integers, optional (default: None)
- Fixes part of the matching. Also known as a “seed” [2]. - Each row of partial_match specifies a pair of matched nodes: node - partial_match[i, 0]of A is matched to node- partial_match[i, 1]of B. The array has shape- (m, 2), where- mis not greater than the number of nodes, \(n\).
- rng{None, int, numpy.random.Generator}, optional
- Pseudorandom number generator state. See - quadratic_assignmentfor details.
- P02-D array, “barycenter”, or “randomized” (default: “barycenter”)
- Initial position. Must be a doubly-stochastic matrix [3]. - If the initial position is an array, it must be a doubly stochastic matrix of size \(m' \times m'\) where \(m' = n - m\). - If - "barycenter"(default), the initial position is the barycenter of the Birkhoff polytope (the space of doubly stochastic matrices). This is a \(m' \times m'\) matrix with all entries equal to \(1 / m'\).- If - "randomized"the initial search position is \(P_0 = (J + K) / 2\), where \(J\) is the barycenter and \(K\) is a random doubly stochastic matrix.
- shuffle_inputbool (default: False)
- Set to True to resolve degenerate gradients randomly. For non-degenerate gradients this option has no effect. 
- maxiterint, positive (default: 30)
- Integer specifying the max number of Frank-Wolfe iterations performed. 
- tolfloat (default: 0.03)
- Tolerance for termination. Frank-Wolfe iteration terminates when \(\frac{||P_{i}-P_{i+1}||_F}{\sqrt{m'}} \leq tol\), where \(i\) is the iteration number. 
 
 - Notes - The algorithm may be sensitive to the initial permutation matrix (or search “position”) due to the possibility of several local minima within the feasible region. A barycenter initialization is more likely to result in a better solution than a single random initialization. However, calling - quadratic_assignmentseveral times with different random initializations may result in a better optimum at the cost of longer total execution time.- References [1]- J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L.J. Podrazik, S.G. Kratzer, E.T. Harley, D.E. Fishkind, R.J. Vogelstein, and C.E. Priebe, “Fast approximate quadratic programming for graph matching,” PLOS one, vol. 10, no. 4, p. e0121002, 2015, DOI:10.1371/journal.pone.0121002 [2]- D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski, C. Priebe, “Seeded graph matching”, Pattern Recognit. 87 (2019): 203-215, DOI:10.1016/j.patcog.2018.09.014 [3]- “Doubly stochastic Matrix,” Wikipedia. https://en.wikipedia.org/wiki/Doubly_stochastic_matrix - Examples - As mentioned above, a barycenter initialization often results in a better solution than a single random initialization. - >>> from scipy.optimize import quadratic_assignment >>> import numpy as np >>> rng = np.random.default_rng() >>> n = 15 >>> A = rng.random((n, n)) >>> B = rng.random((n, n)) >>> options = {"rng": rng} >>> res = quadratic_assignment(A, B, options=options) # FAQ is default method >>> print(res.fun) 47.797048706380636 # may vary - >>> options = {"rng": rng, "P0": "randomized"} # use randomized initialization >>> res = quadratic_assignment(A, B, options=options) >>> print(res.fun) 47.37287069769966 # may vary - However, consider running from several randomized initializations and keeping the best result. - >>> res = min([quadratic_assignment(A, B, options=options) ... for i in range(30)], key=lambda x: x.fun) >>> print(res.fun) 46.55974835248574 # may vary - The ‘2-opt’ method can be used to attempt to refine the results. - >>> options = {"partial_guess": np.array([np.arange(n), res.col_ind]).T, "rng": rng} >>> res = quadratic_assignment(A, B, method="2opt", options=options) >>> print(res.fun) 46.55974835248574 # may vary