scipy.special.it2struve0#
- scipy.special.it2struve0(x, out=None) = <ufunc 'it2struve0'>#
- Integral related to the Struve function of order 0. - Returns the integral, \[\int_x^\infty \frac{H_0(t)}{t}\,dt\]- where \(H_0\) is the Struve function of order 0. - Parameters:
- xarray_like
- Lower limit of integration. 
- outndarray, optional
- Optional output array for the function values 
 
- Returns:
- Iscalar or ndarray
- The value of the integral. 
 
 - See also - Notes - Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1]. - References [1]- Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html - Examples - Evaluate the function at one point. - >>> import numpy as np >>> from scipy.special import it2struve0 >>> it2struve0(1.) 0.9571973506383524 - Evaluate the function at several points by supplying an array for x. - >>> points = np.array([1., 2., 3.5]) >>> it2struve0(points) array([0.95719735, 0.46909296, 0.10366042]) - Plot the function from -10 to 10. - >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10., 10., 1000) >>> it2struve0_values = it2struve0(x) >>> fig, ax = plt.subplots() >>> ax.plot(x, it2struve0_values) >>> ax.set_xlabel(r'$x$') >>> ax.set_ylabel(r'$\int_x^{\infty}\frac{H_0(t)}{t}\,dt$') >>> plt.show() 