scipy.special.
chebyc#
- scipy.special.chebyc(n, monic=False)[source]#
- Chebyshev polynomial of the first kind on \([-2, 2]\). - Defined as \(C_n(x) = 2T_n(x/2)\), where \(T_n\) is the nth Chebychev polynomial of the first kind. - Parameters:
- nint
- Degree of the polynomial. 
- monicbool, optional
- If True, scale the leading coefficient to be 1. Default is False. 
 
- Returns:
- Corthopoly1d
- Chebyshev polynomial of the first kind on \([-2, 2]\). 
 
 - See also - chebyt
- Chebyshev polynomial of the first kind. 
 - Notes - The polynomials \(C_n(x)\) are orthogonal over \([-2, 2]\) with weight function \(1/\sqrt{1 - (x/2)^2}\). - References [1]- Abramowitz and Stegun, “Handbook of Mathematical Functions” Section 22. National Bureau of Standards, 1972.