scipy.special.beta#
- scipy.special.beta(a, b, out=None) = <ufunc 'beta'>#
- Beta function. - This function is defined in [1] as \[B(a, b) = \int_0^1 t^{a-1}(1-t)^{b-1}dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},\]- where \(\Gamma\) is the gamma function. - Parameters:
- a, barray_like
- Real-valued arguments 
- outndarray, optional
- Optional output array for the function result 
 
- Returns:
- scalar or ndarray
- Value of the beta function 
 
 - See also - References [1]- NIST Digital Library of Mathematical Functions, Eq. 5.12.1. https://dlmf.nist.gov/5.12 - Examples - >>> import scipy.special as sc - The beta function relates to the gamma function by the definition given above: - >>> sc.beta(2, 3) 0.08333333333333333 >>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3) 0.08333333333333333 - As this relationship demonstrates, the beta function is symmetric: - >>> sc.beta(1.7, 2.4) 0.16567527689031739 >>> sc.beta(2.4, 1.7) 0.16567527689031739 - This function satisfies \(B(1, b) = 1/b\): - >>> sc.beta(1, 4) 0.25