scipy.special.zetac#
- scipy.special.zetac(x, out=None) = <ufunc 'zetac'>#
- Riemann zeta function minus 1. - This function is defined as \[\begin{split}\\zeta(x) = \\sum_{k=2}^{\\infty} 1 / k^x,\end{split}\]- where - x > 1. For- x < 1the analytic continuation is computed. For more information on the Riemann zeta function, see [dlmf].- Parameters:
- xarray_like of float
- Values at which to compute zeta(x) - 1 (must be real). 
- outndarray, optional
- Optional output array for the function results 
 
- Returns:
- scalar or ndarray
- Values of zeta(x) - 1. 
 
 - See also - References [dlmf]- NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/25 - Examples - >>> import numpy as np >>> from scipy.special import zetac, zeta - Some special values: - >>> zetac(2), np.pi**2/6 - 1 (0.64493406684822641, 0.6449340668482264) - >>> zetac(-1), -1.0/12 - 1 (-1.0833333333333333, -1.0833333333333333) - Compare - zetac(x)to- zeta(x) - 1for large x:- >>> zetac(60), zeta(60) - 1 (8.673617380119933e-19, 0.0)