scipy.special.bdtr#
- scipy.special.bdtr(k, n, p, out=None) = <ufunc 'bdtr'>#
- Binomial distribution cumulative distribution function. - Sum of the terms 0 through floor(k) of the Binomial probability density. \[\mathrm{bdtr}(k, n, p) = \sum_{j=0}^{\lfloor k \rfloor} {{n}\choose{j}} p^j (1-p)^{n-j}\]- Parameters:
- karray_like
- Number of successes (double), rounded down to the nearest integer. 
- narray_like
- Number of events (int). 
- parray_like
- Probability of success in a single event (float). 
- outndarray, optional
- Optional output array for the function values 
 
- Returns:
- yscalar or ndarray
- Probability of floor(k) or fewer successes in n independent events with success probabilities of p. 
 
 - Notes - The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula, \[\mathrm{bdtr}(k, n, p) = I_{1 - p}(n - \lfloor k \rfloor, \lfloor k \rfloor + 1).\]- Wrapper for the Cephes [1] routine - bdtr.- References [1]- Cephes Mathematical Functions Library, http://www.netlib.org/cephes/