scipy.special.itstruve0#
- scipy.special.itstruve0(x, out=None) = <ufunc 'itstruve0'>#
- Integral of the Struve function of order 0. \[I = \int_0^x H_0(t)\,dt\]- Parameters:
- xarray_like
- Upper limit of integration (float). 
- outndarray, optional
- Optional output array for the function values 
 
- Returns:
- Iscalar or ndarray
- The integral of \(H_0\) from 0 to x. 
 
 - See also - struve
- Function which is integrated by this function 
 - Notes - Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1]. - References [1]- Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html - Examples - Evaluate the function at one point. - >>> import numpy as np >>> from scipy.special import itstruve0 >>> itstruve0(1.) 0.30109042670805547 - Evaluate the function at several points by supplying an array for x. - >>> points = np.array([1., 2., 3.5]) >>> itstruve0(points) array([0.30109043, 1.01870116, 1.96804581]) - Plot the function from -20 to 20. - >>> import matplotlib.pyplot as plt >>> x = np.linspace(-20., 20., 1000) >>> istruve0_values = itstruve0(x) >>> fig, ax = plt.subplots() >>> ax.plot(x, istruve0_values) >>> ax.set_xlabel(r'$x$') >>> ax.set_ylabel(r'$\int_0^{x}H_0(t)\,dt$') >>> plt.show() 