scipy.special.bdtrc#
- scipy.special.bdtrc(k, n, p, out=None) = <ufunc 'bdtrc'>#
- Binomial distribution survival function. - Sum of the terms floor(k) + 1 through n of the binomial probability density, \[\mathrm{bdtrc}(k, n, p) = \sum_{j=\lfloor k \rfloor +1}^n {{n}\choose{j}} p^j (1-p)^{n-j}\]- Parameters:
- karray_like
- Number of successes (double), rounded down to nearest integer. 
- narray_like
- Number of events (int) 
- parray_like
- Probability of success in a single event. 
- outndarray, optional
- Optional output array for the function values 
 
- Returns:
- yscalar or ndarray
- Probability of floor(k) + 1 or more successes in n independent events with success probabilities of p. 
 
 - Notes - The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula, \[\mathrm{bdtrc}(k, n, p) = I_{p}(\lfloor k \rfloor + 1, n - \lfloor k \rfloor).\]- Wrapper for the Cephes [1] routine - bdtrc.- References [1]- Cephes Mathematical Functions Library, http://www.netlib.org/cephes/